FINAL RESTORATION PLAN

HOLLY GROVE RESTORATION SITE GUILFORD COUNTY, NORTH CAROLINA

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

EEP Contract No.: D06028-B

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

Prepared by:

Restoration Systems, LLC 1101 Haynes Street, Suite 107 Raleigh, North Carolina 27604

And

Wolf Creek Engineering, PLLC 30 Ben Lippen School Road, Suite 203 Asheville, North Carolina 828-505-2186

June 6, 2007

EXECUTIVE SUMMARY

Restoration Systems, LLC is planning to restore and enhance degraded reaches of Buckhorn Creek and several unnamed tributaries at a site in northeast Guilford County. Other stream reaches and a riparian wetland will be preserved. The work is under contract to the North Carolina Ecosystem Enhancement Program (EEP). The Holly Grove Restoration Site (SITE) encompasses approximately 21,000 linear feet of degraded channels, 1.11 acres of existing wetlands, and 42 acres of impacted riparian buffers.

General Site Conditions

The Holly Grove Restoration Site (SITE) is situated within approximately 226 acres of predominately agricultural land located approximately five miles northwest of Greensboro, NC. The SITE is located within the Cape Fear River Basin in Cataloging Unit 03030002.

Historic land use at the SITE has consisted primarily of agriculture and livestock grazing. The streams within the SITE were historically accessible to livestock, resulting in local disturbances to stream banks and wetland soil surfaces. Additional land use practices, including the maintenance and removal of riparian vegetation, and relocating, dredging, and straightening of on-site streams have contributed to the degraded water quality and unstable channel characteristics.

Goals and Objectives

The primary objectives of the project focus on improving local water quality, contributing to improvement of the water quality in the watershed, and restoring aquatic and riparian habitat. Restoration and enhancement practices proposed for this project have been designed with the intent to minimize unnecessary disturbance to adjacent land and to protect mature riparian vegetation where it exists. Specifically, the project goals consist of the following:

- Restore natural stable channel morphology and proper sediment transport capacity.
- Reduce non-point sources of sedimentation and nutrient inputs.
- Restore approximately 14,084 linear feet of stream through Priority 1 and 2 restoration methodologies.
- Enhance approximately 5,588 linear feet of stream.
- Preserve approximately 1,734 linear feet of stream.
- Preserve approximately 1.11 acres of wetlands.
- Restore approximately 42 acres of riparian buffers.

Note: Once implemented, the activities described above will ultimately provide approximately 16,666 stream mitigation units (SMUs).

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	i
1.0	SITE IDENTIFICATION AND LOCATION	1
1.1	DIRECTIONS TO SITE	1
1.2	USGS HYDROLOGIC UNIT CODE AND NCDWQ RIVER BASIN DESIGNATION	1
2.0	WATERSHED CHARACTERIZATION	1
2.1	DRAINAGE AREAS	1
2.2	SURFACE WATER CLASSIFICATION / WATER QUALITY	1
2.3	Physiography, Geology, and Soils	2
2.4	HISTORIC LAND USE AND DEVELOPMENT TRENDS	2
2.5	PLANT COMMUNITIES	
2.6	FEDERALLY PROTECTED SPECIES	3
2.7	CULTURAL RESOURCES	
2.8	POTENTIAL CONSTRAINTS	
3.0	SITE STREAMS	4
3.1	CHANNEL MORPHOLOGY AND CLASSIFICATION	4
3.2	DISCHARGE AND BANKFULL VERIFICATION	5
3.3	CHANNEL STABILITY ASSESSMENT	
3.4	VEGETATION	
4.0	REFERENCE STREAMS	6
4.1	WATERSHED CHARACTERIZATION	6
4.2	CHANNEL MORPHOLOGY AND CLASSIFICATION	6
4.3	DISCHARGE AND BANKFULL VERIFICATION	
4.4	CHANNEL STABILITY ASSESSMENT	7
4.5	VEGETATION	
5.0	SITE WETLANDS	7
5.1	JURISDICTIONAL WETLANDS	7
5.2	PLANT COMMUNITY CHARACTERIZATION	
6.0	SITE RESTORATION PLAN	8
6.1	RESTORATION GOALS AND OBJECTIVES	8
6.	1.1 Proposed Channel Design and Classification	8
6.	1.2 Proposed Buckhorn Creek	
	1.3 Proposed West Branch1	
	1.4 Proposed Middle Branch1	
	1.5 Proposed East Branch and SE Creek 1	
	1.6 Proposed SW Creek 1	
	1.7 Proposed Little Branch	
6.2	SEDIMENT TRANSPORT ANALYSIS	
6.3	Hydraulic Analysis	
6.4	NATURAL PLANT COMMUNITY RESTORATION	
6.4	4.1 On-Site Invasive Species Management1.	3

7.0	MONITORING AND EVALUATION	
7.1	STREAMS	
7.2	VEGETATION	
7.3	Schedule / Reporting	
8.0	REFERENCES	

TABLES

- Table I. Restoration Structure and Objectives
- Table II. Drainage Areas
- Table III.Valley Slopes
- Table IV. Mapped Soils
- Table V. Land Use of Watershed
- Table VI. Morphologic Table
- Table VIII. Sediment Transport Analysis
- Table IX. Designated Vegetative Communities

FIGURES

- Figure 1. SITE Vicinity Map
- Figure 2. Watershed Map
- Figure 3. Soil Survey Map
- Figure 4. Hydrologic Features Map

APPENDICES

- Appendix A. SITE Photographs
- Appendix B. Existing SITE Stream Data
- Appendix C. SITE NCDWQ Stream Classification Forms
- Appendix D. Reference Reach Photographs
- Appendix E. Reference Reach Data
- Appendix F. Design Calculations
- Appendix G. Categorical Exclusion Form
- Appendix H. Wetland Plat and Data Sheets
- Appendix I. EEP Project Approval Letter
- Appendix J. Land Quality Letter

DESIGN SHEETS

Attachment

1.0 SITE IDENTIFICATION AND LOCATION

1.1 Directions to SITE

The Holly Grove Restoration Site (SITE) is located in Guilford County northeast of Greensboro, NC, approximately twelve miles southeast of Reidsville (Figure 1). To reach the SITE from Raleigh, take I-40 west approximately 62 miles, take NC-61 north, turn right on Tickle Road and proceed west for approximately one mile to the bridge crossing of Buckhorn Creek. The Tickle Road bridge crossing of Buckhorn Creek is located at a latitude/longitude of 36° 11' 46" North and 79° 34' 25" West.

1.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designation

The SITE is located in the Haw River watershed of the Cape Fear River Basin, United States Geological Survey (USGS) 14-digit Hydrologic Unit 03030002020070, within the North Carolina Division of Water Quality (DWQ) sub-basin 03-06-02. Buckhorn Creek drains into Reedy Fork Creek approximately ³/₄ miles downstream of the SITE, which in turn flows to the Haw River eight miles downstream. These portions of Reedy Fork Creek and the Haw River have been assigned the Stream Index Numbers 16-11-9 and 16-(1), respectively, by DWQ.

2.0 WATERSHED CHARACTERIZATION

The SITE is located in a rural watershed within the Piedmont hydrophysiographic region of North Carolina. The SITE watershed is characteristic of the Piedmont region with moderate rainfall and moderately steep valley walls. Annual precipitation within Guilford County averages 45 inches and elevations within the SITE range from 615 ft. to 720 ft. (NGVD). The SITE encompasses approximately 21,000 linear feet of streams including an approximately 9,000 linear feet reach of **Buckhorn Creek**, and six tributaries named for the purposes of this project as **West Branch**, **Middle Branch**, **East Branch**, **Little Branch**, **SW Creek**, and **SE Creek**. There is also one associated floodplain wetland within the project limits (Figure 4).

2.1 Drainage Areas

The drainage area of Buckhorn Creek is 2.72 mi² at the upstream end of the SITE and 4.27 mi² at the downstream end. At their respective confluences with Buckhorn Creek, the drainage areas of the tributaries are: West Branch, 0.20 mi²; Middle Branch, 0.20 mi²; East Branch, 0.20 mi²; Little Branch, 0.02 mi²; SW Creek, 0.19 mi²; and SE Creek, 0.14 mi². See Table II for a complete listing of the drainage areas.

2.2 Surface Water Classification / Water Quality

Reedy Fork Creek in the vicinity of the SITE is assigned a best usage classification of C, NSW by the NCDWQ and as such there are no restrictions on watershed development or types of discharge. These waters are suitable for aquatic life propagation and survival, fishing, wildlife, secondary recreation, and agriculture. Secondary recreation includes wading, boating, and other

uses not involving human body contact with water on an organized or frequent basis. The supplemental classification, NSW (Nutrient Sensitive Waters) includes areas with water quality problems associated with excessive plant growth resulting from nutrient enrichment.

The portion of Reedy Fork Creek to which Buckhorn Creek drains and the portion of the Haw River that is approximately two miles east of the SITE are listed on the DWQ final 2004 and draft 2006 303(d) lists. Streams which are included in the 303(d) list do not meet water quality standards or have impaired uses. Listing of these streams likely results from non-point agricultural and urban runoff and potentially from industrial point source discharges.

2.3 Physiography, Geology, and Soils

The SITE is located in the Southern Outer Piedmont ecoregion of North Carolina. This ecoregion consists of dissected, irregular plains with moderate to steep side slopes and low to moderate gradient streams with mostly gravel and cobble substrates. Underlying geology typically consists of gneiss, schist, and granite covered by deep saprolite and mostly red clayey subsoils.

The valleys throughout the SITE are moderately sloped colluvial valleys with cross-slopes ranging from 4% to 40% and longitudinal slopes typically ranging from 0.4% to 2.0%. See Table III for a listing of the valley slopes within the SITE.

The Guilford County Soil Survey (NRCS, 1977) indicates the SITE is underlain by six soil series; Appling, Cecil, Chewacla, Congaree, Coronaca, Wilkes, and Vance. (Figure 3). Table IV lists the drainage class and hydric classification for each of these soils.

2.4 Historic Land Use and Development Trends

The watershed upstream from the SITE is characterized mainly by agricultural and forested land (See Table V). Residential land use accounts for only a small percentage of the watershed. Some developmental pressure can be anticipated in the future from growth associated with accelerating development and expansion of the Greensboro metropolitan area; however, dramatic changes in the land use in the immediate future are not likely. Currently residential land use makes up approximately 3 percent of the watershed and impervious area covers approximately 1 percent of the total watershed. On-site land uses include pastureland, agriculture, and several small pine/hardwood forest stands. Grazing livestock have historically had access to the on-site stream reaches and the adjacent floodplains. The lack of exclusionary barriers appears to have contributed to the degradation of stream banks. Pastureland and row crop areas are subject to broadcast application of animal waste from on-site lagoons.

2.5 Plant Communities

The SITE is characterized by agricultural land, a mixed pine/hardwood forest stand, and poorly developed/disturbed riparian buffers. The SITE was historically grazed by livestock, and presently receives regular vegetative maintenance, and is plowed for row crops. In addition, soils within the agricultural land and along the stream banks are disturbed and exposed with little vegetation.

Agricultural land dominates the majority of the SITE adjacent to the stream reaches and is characterized by native grasses as well as invasive species including multiflora rose (*Rosa multiflora*), blackberry (*Rubus* spp.), and milkweed (*Asclepias* sp.) Isolated patches and individual hardwood species occur within the floodplain and adjacent to the stream channels. Tree and sapling layers include tulip tree (*Liriodendron tulipifera*), sweet-gum (*Liquidambar styraciflua*), American sycamore (*Platanus occidentalis*), black walnut (*Juglans nigra*), ironwood (*Carpinus caroliniana*), green ash (*Fraxinus pennsylvanica*), and various oak species (*Quercus* spp.) The shrub and vine layers are dominated by multiflora rose and also contain Chinese privet (*Ligustrum sinense*) and greenbrier (*Smilax rotundifolia*). Additionally, an area of mature, old-growth American holly (*Ilex opaca*) occurs within the southern portion of the SITE.

2.6 Federally Protected Species

The Endangered Species Act (ESA) of 1973, as amended, obligates federal actions to consult with the Fish and Wildlife Service (FWS) should proposed actions potentially conflict with listed species or their habitat. The only federally protected species listed for Guilford County is the Bald Eagle (*Haliaeetus leucocephalus*) which has a status of threatened. A review of the habitat requirements confirms that the project activities will not disturb nesting or foraging habitat for the Bald Eagle. The closest habitat suitable for the Bald Eagle occurs over five miles northwest of the SITE at Washburn Lake. Based on the absence of suitable habitat for the bald eagle, it is reasonable to conclude that the project will have **No Effect** on the listed species.

Additionally, the Carolina Darter (*Etheostoma collis lepidinion*) is considered rare and is listed as a Federal Species of Concern (FSC). The Carolina Darter inhabits warm pools and slow runs in streams, over sand and gravel. Their primary forage includes insects and other invertebrates and largely resides in the Yadkin, Pee Dee and Catawba drainages in North and South Carolina. Organisms assigned the FSC status are not protected by the ESA.

2.7 Cultural Resources

The North Carolina Department of Cultural Resources, State Historic Preservation Office (SHPO) conducted a review of the SITE and provided a concurrence letter dated September 25, 2006 which concluded that there are no known historic resources that will be affected by the proposed project pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations.

2.8 Potential Constraints

Potential constraints considered during design development include the potential for hydrologic trespass, the presence of existing utilities, the landowner's need for stream crossings, and existing bedrock outcrops.

The potential for hydrologic trespass exists only upstream of Buckhorn Creek. The proposed Priority II restoration provides for equal conveyance of bankfull discharge and greater conveyance of flood discharges as compared to the existing channel properties. As such, hydrologic trespass will not be a concern. The primary existing utility of concern is the Williams natural gas pipeline. This pipeline crosses Buckhorn Creek in three locations and also crosses Little Branch and SE Creek. Where the pipeline crosses Buckhorn Creek it passes below the channel bed approximately five feet and the channel has been lined with riprap. The proposed design will maintain the existing horizontal and vertical alignment through these existing crossings, however adjustments to the banks and removal of the riprap are proposed. Coordination with the Williams Company has included discussion of proposed channel alterations with their engineering staff and will include transmittal of plans for their review, pre-construction sub-surface location of the pipeline, and on-site presence of Williams' staff during construction activities within their right-of-way.

The stream crossings required for access by the property owner do not propose a significant constraint. These crossings will be used primarily for agricultural equipment and will consist of stream fords constructed on hardened riffle sections.

The existing bedrock outcrops provide two potential constraints. First, where bedrock is present in the stream bed and banks it creates a fixed point that the horizontal and/or vertical alignment must pass through. To the extent feasible these features have been identified in the topographic survey and incorporated into the design alignment. Second, where the bedrock is present but not visible it may be encountered during construction. This is a likely occurrence along the entire reach of Buckhorn Creek and the proposed design attempts to mitigate this concern by limiting excessive channel realignment. Where bedrock is encountered during construction a determination will be made in the field by the engineer as to the effect on the channel alignment and what adjustments are appropriate.

3.0 SITE STREAMS

On-site streams have been characterized based on fluvial geomorphic principles (Rosgen 1996a). A topographic survey was conducted of the entire SITE to provide information for the development of construction plans and to provide sufficient detail to assess existing geomorphic conditions throughout the SITE.

3.1 Channel Morphology and Classification

Buckhorn Creek has been realigned and dredged throughout the project reach, resulting in a channel form that is incised with low sinuosity. The channel classifies as a Type F stream under the Rosgen classification system throughout most of the upper reach with some portions classifying as Type G. The lower reaches classify primarily as a Type G stream. The entrenchment ratios range from 1.1 to 1.4 and the bank-height ratios typically range from 1.7 to 2.3. The low entrenchment ratios and high bank-height ratios combine to increase the stress on the banks. Although the bed profile is vertically stable due to occasional bedrock outcrops, the resultant bed form consists of relatively short riffles with excessively long pool features which limit the habitat value. Bed material exhibits a strong bimodal distribution with larger cobble material associated with the bedrock outcrops and gravel size material composing the majority of the movable bed. Some reaches that consist of excessively long pools are dominated by silt and sand.

The tributary reaches generally fall into two categories: 1) reaches which are classified primarily as Type G streams and require restoration, and 2) reaches which are classified as Type B, C, and E and which require enhancement. The reaches that require restoration include the lower reaches of West Branch, Middle Branch, and East Branch; the entire reach of Little Branch; and the upper reach of SE Creek and SW Creek. These reaches have low width-depth ratios that range from 7 to 9 and entrenchment ratios that range from 1.2 to 1.4. The entrenchment and bank height ratios indicate that the channel flows rarely access the historic floodplain.

The reaches that require enhancement include the upper reaches of West Branch and East Branch and the lower reaches of SE Creek and SW Creek. The upper reach of West Branch has width-depth ratios that range from 14 to 18 with entrenchment ratios that range from 1.5 to 2.4. The upper reach of East Branch and portions of SW Creek have width-depth ratios from 8 to 11 with entrenchment ratios from 3 to 9. These reaches classify as Type E streams. Some portions of SW Creek classify as Type B Streams with entrenchment ratios of 1.4 to 1.9.

3.2 Discharge and Bankfull Verification

Bankfull identification on degraded reaches is subject to a significant amount of interpretation since the features can often be difficult to distinguish and even misleading. Verification of bankfull was accomplished by plotting the bankfull cross sectional area for each reach against the regional curve data. Also included in this plot are the bankfull cross sectional areas for the reference reaches. The graph indicates that the bankfull elevation identified in the surveyed reaches is consistent with the regional curve data.

After verification of bankfull cross sectional area, bankfull discharge was calculated for each surveyed reach using a single-section analysis. Manning's 'n' was estimated from relative roughness calculations of the bed material and from observation of the channel flow conditions. Water surface slope was assumed to be consistent with the slope of the bed profile. Discharges were then plotted against a graph of the regional curve data and bankfull discharges from the reference reaches. The graphing of these data indicated that the calculated bankfull discharges were consistent with the regional curve data.

3.3 Channel Stability Assessment

The current channel stability was analyzed by evaluating existing width-depth ratios, bank height ratios, and sediment transport.

Width-depth ratios within the SITE range from 13 to 19 on reaches classified as Type F streams and 7 to 9 on reaches classified as Type G streams. The width-depth ratios for the reference reaches were from 6 to 11 for the Type E stream and 12 to 14 for the Type B stream. The lower width-depth ratios found within the SITE on Type G reaches will result in a higher mean depth during bankfull events and subsequent increased shear stress on the bed. The higher width-depth ratios on the Type F reaches will result in higher stress on the banks, especially along the toe of the banks.

Bank height ratios within the SITE range from 1.3 to 2.4 with typical ratio at a value of 1.9. The bank height ratios for the reference reaches were typically at 1.2. The higher ratios found within the SITE result in significantly increased shear stress during greater-than-bankfull flow events.

3.4 Vegetation

Dominant riparian vegetation adjacent to SITE streams consists of Chinese privet (*Ligustrum sinense*), multiflora rose (*Rosa multiflora*), American sycamore (*Platanus occidentalis*), iron wood (*Carpinus caroliniana*), and tulip poplar (*Liriodendron tulipifera*).

4.0 **REFERENCE STREAMS**

Two reference reaches were identified and surveyed to assist in the design of the SITE streams. The first reference is located on a UT to Polecat Creek in Randolph County, northeast of Randleman. The second reference is located on Fork Creek in Randolph County, south of Asheboro.

4.1 Watershed Characterization

Both reference reaches are located in the Piedmont hydrophysiographic region of North Carolina. The watersheds are similar in many ways to the character of the SITE watershed including average rainfall, elevation ranges, and valley types. Both watersheds are predominately rural with land use consisting of agriculture, pasture, and forested stands. The drainage area for the UT to Polecat Creek is 0.4 square miles and for Fork Creek is 2.2 square miles.

4.2 Channel Morphology and Classification

The two reference reaches were selected to represent the probable configurations for the proposed stream restorations. Detailed geomorphic surveys and Level II Rosgen classification were conducted on each of the reference reaches (See Appendix E and Table VI).

The UT to Polecat Creek is representative of a meandering E channel in a moderately confined valley with a well developed floodplain, and Fork Creek is representative of a low sinuosity B stream in a moderately sloped colluvial valley. Bed material, channel slope, and valley form of both streams are consistent with the SITE and provide reasonable models for the potential channel forms that can be expected at the SITE.

4.3 Discharge and Bankfull Verification

Bankfull was readily identified on each of these streams as they exhibited consistent indicators throughout the reaches. Verification of bankfull was accomplished by plotting the bankfull cross sectional area for each reach against the regional curve data. The graph indicates that the bankfull identified in the surveyed reaches is consistent with the regional curve data.

After verification of bankfull cross sectional area, bankfull discharge was calculated for each surveyed reach using a single-section analysis. Manning's 'n' was estimated from relative roughness calculations of the bed material and from observation of the channel flow conditions. Water surface slope was assumed to be consistent with the slope of the bed profile. Discharges were then plotted against a graph of the regional curve data. The graphing of these data indicated that the calculated bankfull discharges were consistent with the regional curve data.

4.4 Channel Stability Assessment

A detailed channel stability assessment was not performed for these reaches since the bank and bed stability was obvious from observation. Subsequent review of the surveyed dimensions confirmed that width-depth ratios and bank height ratios were within the appropriate range for stable, self maintaining streams. Additional observations included significant upstream and downstream reconnaissance to identify any past, present, or future signs or sources of degradation. The existence of grade controlling bedrock was identified beyond the resurveyed reaches.

4.5 Vegetation

A mature Mesic Mixed Hardwood Forest (Piedmont Subtype) community was present at both reference stream sites (Schafale and Weakley 1990). Canopy species observed include American beech (*Fagus grandifolia*), red maple (*Acer rubrum*), southern red oak (*Quercus falcata* var. *falcata*), sweet gum (*Liquidambar styraciflua*), and tulip poplar (*Liriodendron tulipifera*). The observed shrub/sapling species include American beech, American holly (*Ilex opaca*), black cherry (*Prunus serotina*), Chinese privet (*Ligustrum sinense*), ironwood (*Carpinus caroliniana*), mountain laurel (*Kalmia latifolia*), red maple, and tag alder (*Alnus serrulata*). Observed herbaceous and woody vine species include Christmas fern (*Polystichum acrostichoides*), common greenbrier (*Smilax rotundifolia*), running cedar (*Lycopodium clavatum*), and sphagnum moss (*Sphagnum* spp.). Although some woody riparian species were observed, their presence was not sufficiently dominant to separate out a riparian community type form the Mesic Mixed Hardwood Forest (Piedmont Subtype).

5.0 SITE WETLANDS

5.1 Jurisdictional Wetlands

One jurisdictional wetland was delineated within the SITE on September 27, 2006 (Appendix H). The wetland is located in a relatively flat area of a remnant pond bottom at the downstream end of Middle Branch. This pond was apparently breached in the past and no longer has a maintained pool. The wetland area is bounded by the remnant earthen berm and relatively steep valley slopes. The wetland can be characterized as a PSS01C Wetland, although subsets of the complex exhibit characteristics of PFO1C and even PEM1E (Cowardin 1979) and has a saturated hydrology driven primarily by inflow of a perennial stream and topographic entrainment of the surface hydrology. A surveyed plat of the wetland boundary and the data sheets are included in Appendix H.

5.2 Plant Community Characterization

Plant community associated with the palustrine wetland that exists along Middle Branch is a mixed deciduous forest (PFO1C)/scrub-shrub (PSS1C)/emergent (PEM1E) community. Ecotones between the emergent and forested/scrub-shrub components of the community are fairly sharp and distinct. Less distinction exists between the forested and scrub-shrub elements. The dominant canopy species in the PFO component is overwhelmingly American ash (Ulmus Americana) and black willow (Salix nigra), but sweet gum (Liquidambar styraciflua), red maple (Acer rubrum), sycamore (Platanus occidentalis) and box elder (Acer negundo) are also represented in much smaller numbers. Cattail (Typha latifolia) and beard-grass (Scirpus sp.) dominate the emergent components of the wetland. Needle rush (Juncus effusus) is very apparent in the herbaceous/shrub layer, as is false nettle (Boehmeria cylindrical). Common vines found in this community include honeysuckle (Lonicera japonica), trumpet creeper (Campsis radicans) and poison ivy (Toxicodendron toxicodendron). Blackberry (Rubus spp.), red cedar (Juniperus virginiana), smartweed (Polygonum sp.) and goldenrod (Solidago spp.) occur in various concentrations throughout the riparian landscape adjacent to and within the wetland. Goldenrod and blackberry is profusely distributed along slopes above the wetland, although blackberry is occasionally seen within the wetland. Red cedar tends to occupy these same slopes above the saturated soil line. Canopy species reach to heights of 12-16 feet with a few specimens a little taller.

6.0 SITE RESTORATION PLAN

6.1 **Restoration Goals and Objectives**

The primary objectives of the project focus on improving local water quality, contributing to improvement of the water quality of the overall watershed, and restoring aquatic and riparian habitat. Specifically these goals consist of the following:

- Restore natural stable channel morphology and proper sediment transport capacity.
- Reduce non-point source sedimentation and nutrient inputs.
- Restore approximately 14,084 linear feet of stream through Priority 1 and 2 restoration.
- Enhance approximately 5,588 linear feet of stream.
- Preserve approximately 1,734 linear feet of stream.
- Preserve approximately 1.11 acres of wetlands.
- Restore approximately 42 acres of riparian buffers.

Once implemented, the activities described above will ultimately provide approximately 16,666 stream mitigation units (SMUs).

6.1.1 Proposed Channel Design and Classification

Restoration and enhancement practices proposed for this project have been designed with the intent to minimize unnecessary disturbance to adjacent land and to protect mature riparian vegetation where it exists. Consideration was given to the potential functional lift provided by restoration activities in comparison to the functional lift that could be realized through the natural process of channel evolution. Included in this consideration was an attempt to determine the disturbance and sedimentation that could occur as a result of this natural process. In the absence

of established methodology, best professional judgment has been used to determine which channel reaches could potentially benefit most from preservation or enhancement over full restoration. Where restoration was determined to be warranted, consideration was given to which reaches could best be served by maintaining as much of the existing channel pattern as possible.

The proposed channels of Buckhorn Creek and its tributaries are designed as Type B4c streams with the exception of the lower reach of Middle Branch. This channel configuration provides the most stable and natural form in the moderately sloping colluvial valleys that are found throughout the SITE. Not only does it effectively convey bankfull discharge and sediment load but also conforms to the natural conveyance of flood flows. Additionally, since broad alluvial valleys are generally not found within the SITE, the lower sinuosity of the Type B4c streams will result in minimizing grading and earthwork activities. The proposed channel dimensions, patterns, and profiles are based on hydraulic relationships and morphologic dimensionless ratios of the reference reaches (See Table VI). The proposed typical sections and channel alignments are shown in the Design Sheets.

6.1.2 Proposed Buckhorn Creek

The existing entrenched and channelized condition of Buckhorn Creek along with the many locations of unstable and vertical banks provided justification for consideration of full reconstruction and restoration of the stream. The original design concept also included realignment of portions of the stream offset from the existing channel alignment and raising the channel grade through Priority I restoration to reconnect the channel to the floodplain. Subsequent field investigations resulted in modifications to the original restoration concept. Significant occurrence of bedrock outcrops in the channel bed confirms that although the stream is entrenched, it has become vertically stable by these frequent grade controls. The bedrock outcrops now represent fixed nick points in the profile which are identified in the field as excessively short riffles followed by considerably long flat pools. Additionally, the existence of outcrops in the bed suggests that bedrock may also be present at shallow depths below the surface in many locations throughout the valley which could complicate channel realignment efforts.

The revised design concept consists of Priority II restoration, which will incorporate the existing bedrock features into the final channel profile. Adjustment to the existing channel pattern and dimensions are necessary to address problems associated with bank stability and sediment transport. However, in order to minimize disturbance, the proposed alignment will conform to the current valley position and where possible existing channel pattern features will be incorporated into the alignment. The proposed B4c stream type will have a narrow sloping bench which will provide relief above the bankfull stage while minimizing the extent of excavation required on the adjacent land. Where mature trees exist they will be incorporated into the proposed channel as log vanes and woody debris. The bed profile will be reconstructed to conform to the proposed pattern and to provide for riffles and pools of appropriate length.

6.1.3 Proposed West Branch

The entire length of West Branch was considered for full restoration due to its entrenched condition, the presence of vertical banks, and the erratic channel pattern. However, much of West Branch has a relatively high width-depth ratio indicating that the channel has progressed considerably through the channel evolutionary process. It does not appear that the channel will continue to widen significantly and as a result bank stress will not continue to increase. Additionally, there is a substantial riparian buffer containing many mature trees. It was determined that Priority I restoration would involve an unacceptable level of disturbance for a questionable level of functional lift throughout the majority of West Branch. The lower reach of West Branch, however, has a much lower width-depth ratio and only a sparse vegetative buffer. In addition to significant entrenchment, the profile along this lower reach steepens as it approaches Buckhorn Creek, which could eventually result in the formation of a headcut and subsequent channel rejuvenation.

The design concept for West Branch consists of providing enhancement along the majority of the stream with full restoration planned only for the downstream portion. The enhancement will include targeted bank stabilization through minimal regrading and log-vane installation. Construction access to the channel will be limited to a few routes across the existing riparian buffer which will be selected to minimize disturbance to mature vegetation. Enhancement will also include removal of invasive species, supplemental planting of the riparian buffer with native vegetation, and exclusion of livestock. The lower reach of West Branch will involve Priority II restoration and will include adjustment to the dimension and pattern of the channel along with installation of rock and log structures. The overall profile grade will be held, however, the riffle-pool sequence will be reconstructed to conform to the pattern.

6.1.4 Proposed Middle Branch

Priority I restoration is proposed for the majority of Middle Branch. Consideration was given to pursuing a passive approach and allowing the channel to evolve towards its preferred natural state, however, on-site conditions dissuaded this approach. Observations of the existing channel provide analogs of the natural evolutionary process that suggest the stream will evolve from a low width-depth, entrenched channel to a moderate width-depth, low sinuosity channel as the vegetative canopy matures. This process will likely involve the removal and displacement of significant sediment into Buckhorn. This observation along with a relatively sparse riparian buffer and few mature trees provided validation for a full restoration approach.

The lower reach of Middle Branch passes through a wetland area that has formed in the bottom of a former pond bottom. The proposed design will leave the wetland intact by terminating stream restoration work at the upstream boundary of the wetlands and lowering the existing pond dam to an elevation slightly above the existing wetland. A new channel will be constructed at the outfall of the wetlands with the channel invert set at the existing wetland elevation.

6.1.5 Proposed East Branch and SE Creek

Similar consideration and rational, as discussed for Middle Branch, was used in evaluation of East Branch. As such, only the reach downstream of Tickle Road which exhibits a low width-

depth ratio, entrenched, channel with sparse and early successional vegetation is proposed for full channel reconstruction and restoration. Upstream of Tickle Road where a more mature canopy has allowed for the development of a channel with moderate width-depth ratio, enhancement is proposed to address locations of bank instability and deficiencies in the riparian buffer.

Likewise, restoration is proposed for the upper reach of SE Creek where there is no substantial riparian vegetation. Preservation is planned for all reaches of SE Creek and UT to SE Creek that are contained within the mature forested areas.

6.1.6 Proposed SW Creek

The upper reach of SW Creek is significantly degraded, exhibiting vertical unstable banks, toeof-bank scour, headcuts, and a high sediment load. The channel appears to be in the early stages of rejuvenation, with much of the remnant Type B4 channel pattern intact and the profile incising to form a Type G channel. It is likely that significant sediment removal will occur through the normal process of channel evolution. The riparian buffer, however, is well established and presents a deterrence to restoration since reconstruction of the channel would involve significant disturbance. Along the remainder of SW Creek the riparian buffer is well established with a mature canopy. The channel is generally stable despite being incised, with the exception that there are several locations of unstable banks and channel migrations that are contributing to sedimentation.

The proposed design consists of utilizing the remnant channel pattern by raising the channel bed in place. Restoration efforts will involve installing constructed riffles and rock cross vanes to lift the channel profile, adjusting selected potions of the pattern, and reshaping the cross sectional geometry where necessary. This approach is favored along the upper reach of SW Creek since it will involve significantly less disturbance to the existing riparian vegetation. The remainder of SW Creek is proposed for enhancement that will involve addressing bank instability in specific locations. Access to these areas through the riparian buffer has been evaluated and determined to be feasible with limited disturbance.

6.1.7 Proposed Little Branch

Similar consideration and rational, as discussed for Middle Branch, was used in evaluation of Little Branch. As such, the entire reach, which exhibits a low width-depth ratio, entrenched, channel with sparse and early successional vegetation is proposed for full channel reconstruction and restoration.

6.2 Sediment Transport Analysis

The design sections were evaluated for their competency to transport the sediment supplied by the watershed. Critical shear stress was calculated for each design section and related to particle sizes expected to be mobilized. These predicted particle sizes were compared to the caliber of the bed material found in the existing channels. Generally, bed material throughout the SITE is composed of particles with a D_{50} of 20 mm and a D_{84} of 30 mm to 50 mm. The proposed

channels were designed to mobilize particles in the 20 mm to 30 mm range and the target critical shear stress was 0.45 lb/ft^2 with a range of 0.4 to 0.6 lb/ft² (See Table VIII).

6.3 Hydraulic Analysis

The proposed channel sections were evaluated for their ability to convey the bankfull flows and the flood flows of the watershed by performing a hydraulic analysis. Additionally, Buckhorn Creek is currently a FEMA floodplain designation of Zone A with a proposed designation of Zone AE when the Flood Insurance Rate Maps (DFIRM) become effective in June of 2007. As such the hydraulic analysis has been conducted to verify that there will be no impact on the Base Flood Elevations (BFE) which is the 1% annual chance flood event.

The analysis consisted of first modeling the existing conditions with the HEC-RAS water surface profile model. During the development of this restoration plan the NCDOT Bridge Maintenance Division removed the bridge at the Tickle Road crossing and began construction of a new bridge. It is anticipated that construction on this structure will not be completed until April of 2007. For the purpose of the hydraulic analysis and in order to accurately assess the effect of proposed channel modifications, the plan dimensions for the bridge under construction were utilized in the development of the existing model. Cross sections were taken through the channel and the adjacent valley at locations that approximated the FEMA approximate study.

Secondly, proposed conditions were analyzed by revising the existing sections based on the proposed channel geometry and revising the model to reflect proposed pattern conditions and anticipated future roughness coefficients. Comparison of the existing and proposed HEC-RAS models demonstrated that the BFE's are slightly lower in the proposed model and that there will be no hydraulic trespass onto adjacent properties.

6.4 Natural Plant Community Restoration

Buffer restoration activities will provide surface water storage, nutrient cycling, removal of imported elements and compounds, and will create a variety and abundance of wildlife habitat.

Riparian vegetation will be restored within approximately 42 acres of the SITE. Planting vegetation on the stream banks is proposed to re-establish vegetation community patterns within the stream corridor, associated side slopes, and transition areas. Replanting the floodplain and stream banks is expected to provide stream bank stability, shade and cool surface waters, filter pollutants from adjacent runoff, and provide habitat for area wildlife. The vegetated stream buffer will extend 50 feet on both sides of the stream.

Throughout the majority of the SITE the target community will be a Mesic Mixed Hardwood Forest (Piedmont Subtype). Bare root seedling will be planted within specified areas at a density of 436 stems per acre. To provide structural diversity, native shrubs will also be incorporated in the buffers at a density of 681 stems per acre. Shrubs will be installed in small groups of 2 to 3 individuals with random placement of groups to establish a more natural appearance. On the stream banks, live stakes and/or bare root stock will be used along with native herbaceous seed mix. Live stakes and/or seedlings will be placed at a density of 2 to 4 stakes per square yard. See Table IX for the list of plant species according to planting zones.

6.4.1 On-Site Invasive Species Management

Prior to re-vegetation of the SITE, non-native invasive species will be removed from the SITE within the conservation easement boundary. Invasive species management will continue through the 5-year monitoring period. Management procedures will conform to the recommendation in the Southeast Exotic Pest Plant Council Invasive Plant Manual. Non-native invasive species currently present on the SITE include multifloral rose, blackberry, privet, and honeysuckle.

7.0 MONITORING AND EVALUATION

The stream restoration monitoring will be in accordance with the EEP SITE Specific Mitigation Plan and the U. S. Army Corps of Engineers (USACE) Stream Mitigation Guidelines. Monitoring will consist of collection and analysis of stream stability and vegetation survival data on an annual basis for at least five years. Monitoring will include measurement of channel dimension and bed material, evaluation of photographs, vegetation sampling, and monitoring of bankfull occurrences.

7.1 Streams

Data collected for monitoring will be evaluated to determine whether significant deviation from the as-built condition has occurred and if the channel adjustments are trending toward greater stability. Data collection will consist of detailed dimension and pattern measurements, longitudinal profile, and bed material samples. Data evaluation will include calculation and comparison of dimensionless ratios. Bed material should indicate a reduction in the percentage of fine sediments and a particle distribution in the target range of D_{50} of 15 mm to 25 mm. Permanent photo station will be established to provide a visual record of channel development.

7.2 Vegetation

Quantitative sampling plots for vegetation will be established in the riparian buffer restoration areas. Vegetation plots will be inventoried following the first growing season after installation. Permanent photo stations will be established for each sampling plot to provide a visual record of vegetation development.

7.3 Schedule / Reporting

As-built plans will be submitted within 90 days following the completion of construction. Monitoring will occur annually following the growing season for at least five consecutive years. The monitoring period will also include the occurrence of at least two bankfull events. A monitoring report will be prepared annually and will include tabulation of the collected data, comparisons to previously collected data, and an evaluation of the stability and success of the project. Each report will be submitted no later than December 31st of each monitoring year.

8.0 **REFERENCES**

Cowardin LM, Carter V, Golet FC, and LaRoe ET. 1979. <u>Classification of Wetlands and</u> <u>Deepwater Habitats of the United States</u>. U.S. Fish and Wildlife Service. U.S. Government Printing Office, Washington D.C.

Division of Water Quality. 2005. <u>Identification Methods for the Origins of Intermittent and</u> <u>Perennial Streams, Version 3.1</u>. North Carolina Department of Environment and Natural Resources.

Division of Water Quality, Planning Section, Classification and Standards Unit. July 2006. <u>NC</u> <u>Stream Classification Schedules. <u>http://h2o.enr.state.nc.us/bims/reports/reportsWB.html</u> North Carolina Department of Environment and Natural Resources.</u>

Harmon, W.H. et al. 1999. <u>Bankfull Hydraulic Geometry Relationships for North Carolina</u> <u>Streams</u>. AWRA Wildland Hydrology Symposium Proceedings. Edited by: D.S. Olsen and J.P. Potyondy. AWRA Summer Symposium. Boxeman, MT.

North Carolina Natural Heritage Program. May 2006. <u>Guide to Federally Listed Endangered and Threatened Species of North Carolina</u>. <u>http://207.4.179.38/nhp/</u> North Carolina Department of Environment and Natural Resources.

Rosgen, D. 1996. <u>Applied River Morphology</u>. Wildland Hydrology.

Schafale MP and Weakley AS. 1990. <u>Classification of the Natural Communities of North</u> <u>Carolina: Third Approximation</u>. North Carolina Department of Environmental Management, Division of Parks and Recreation, Natural Heritage Program.

Southeast Regional Climate Center (SERCC). 2006. Historical Climate Summaries for North Carolina. <u>http://www.sercc.com/climateinfo/historical/historical_nc.html</u>

U.S. Department of Agriculture, Natural Resources Conservation Service in Cooperation with the North Carolina Agricultural Experiment Station. <u>Soil Survey of Guilford County, North</u> Carolina. <u>http://websoilsurvey.nrcs.usda.gov/app/</u>

TABLES

Table I. Restoration Structures and Objectives								
Restoration	Station Range/	Mitigation	Priority	Existing	Designed	Note		
Reach / Area	Reach / AreaLocationT		Approach	LF or AC	LF or AC	Note		
Buckhorn Cr.	100+00-191+50	Restoration	P2	9091	9150			
West Branch	300+00 - 308+00	Enhancement	E2	870	894			
West Branch	308+00 - 312+30	Restoration	P2	390	390			
Middle Branch	400+00-401+00	Enhancement	E2	110	110			
Middle Branch	401 + 00 - 418 + 50	Restoration	P1	1730	1740			
Middle Branch	418+50-423+00	Enhancement	E2	475	475			
Middle Branch	423+00-425+40	Restoration	P1	90	250	Day-lighting		
East Branch	500+00-518+80	Enhancement	E2	1880	1880			
East Branch	519 + 50 - 527 + 00	Restoration	P1	744	780			
Little Branch	200+00 - 206+00	Restoration	P1	564	600			
SW Creek	600+00-607+34	Restoration	P1	732	734			
SW Creek	608 + 26 - 630 + 55	Enhancement	E2	2229	2229			
UT to SW Cr.	650+00 - 653+50	Preservation		325	325			
SE Creek	702+00 - 706+25	Restoration	P1	425	440			
SE Creek	706 + 25 - 715 + 06	Preservation		881	881			
UT to SE Cr.	750+00-755+28	Preservation		528	528			
Wetland A	Back Cr. Sta 10+00	Enhancement	NA	1.11	1.11			

Table II. Drainage Areas						
Reach	Drainage Area (mi ²)					
Buckhorn Creek – Reach 1 (U/s End to D/s of UT2)	2.78					
Buckhorn Creek – Reach 2 (D/s of UT2 to West Branch)	3.04					
Buckhorn Creek – Reach 3 (D/s of West Branch to Midddle Brnach)	3.24					
Buckhorn Creek – Reach 4 (D/s of Middle Branch to East Branch)	3.51					
Buckhorn Creek – Reach 5 (D/s of East Branch to SW Creek)	3.76					
Buckhorn Creek – Reach 6 (D/s of SW Creek to D/s End)	4.02					
West Branch – D/s End	0.20					
Middle Branch – U/s End	0.09					
Middle Branch – D/s End	0.20					
East Branch – D/s End	0.20					
Little Branch – D/s End	0.02					
SW Creek – U/s End	0.09					
SW Creek – D/s End	0.19					
SE Creek – U/s End	0.14					
SE Creek – D/s End	0.18					

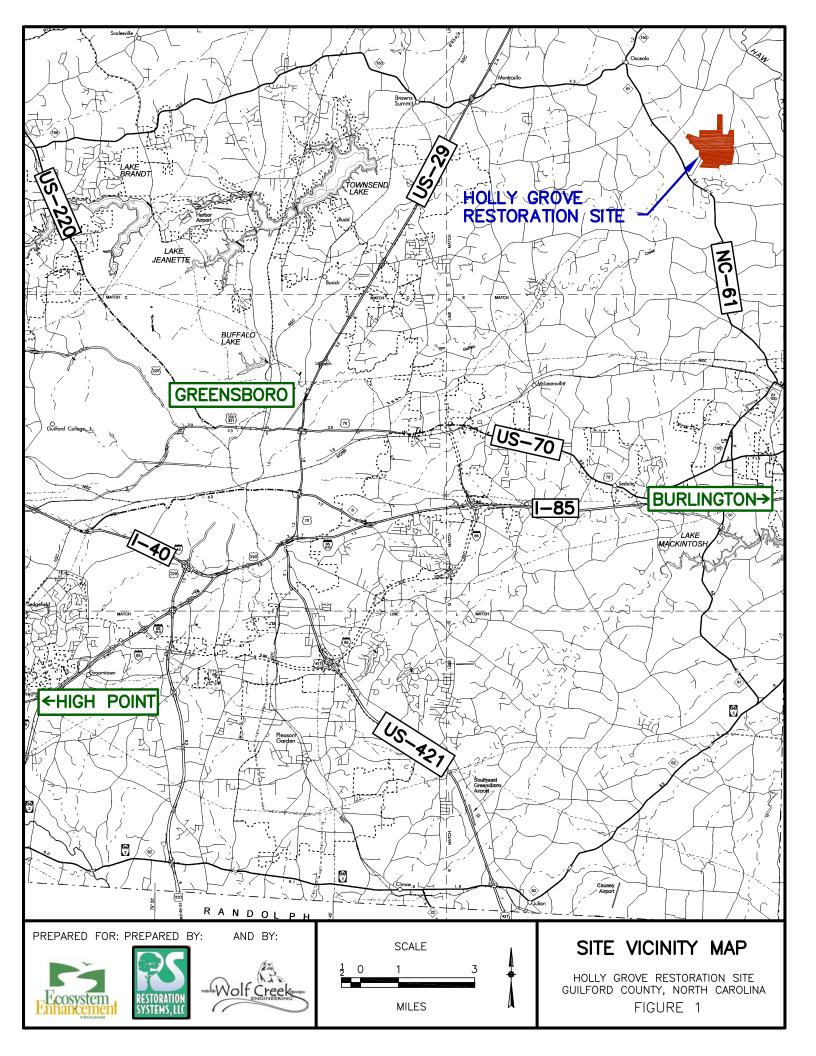
Table III. Valley Slopes						
Stream Reach	Valley Longitudinal Slope (%)	Valley Cross Slope (%)				
Buckhorn Creek – Reach 1	0.4 - 0.5	10 - 20				
Buckhorn Creek – Reach 2	0.4	8 - 20				
Buckhorn Creek – Reach 3	0.45	4 - 15				
Buckhorn Creek – Reach 4	0.5 - 0.6	7 – 15				
Buckhorn Creek – Reach 5	0.6 - 0.7	4 - 18				
Buckhorn Creek – Reach 6	0.4	5 - 40				
West Branch	1.4	7 – 15				
Middle Branch	1.4 - 2.1	4 - 20				
East Branch	1.5	5 - 12				
Little Branch	3-4	5 - 30				
SW Creek	2-3	6 – 20				
SE Creek	0.8	5 - 17				

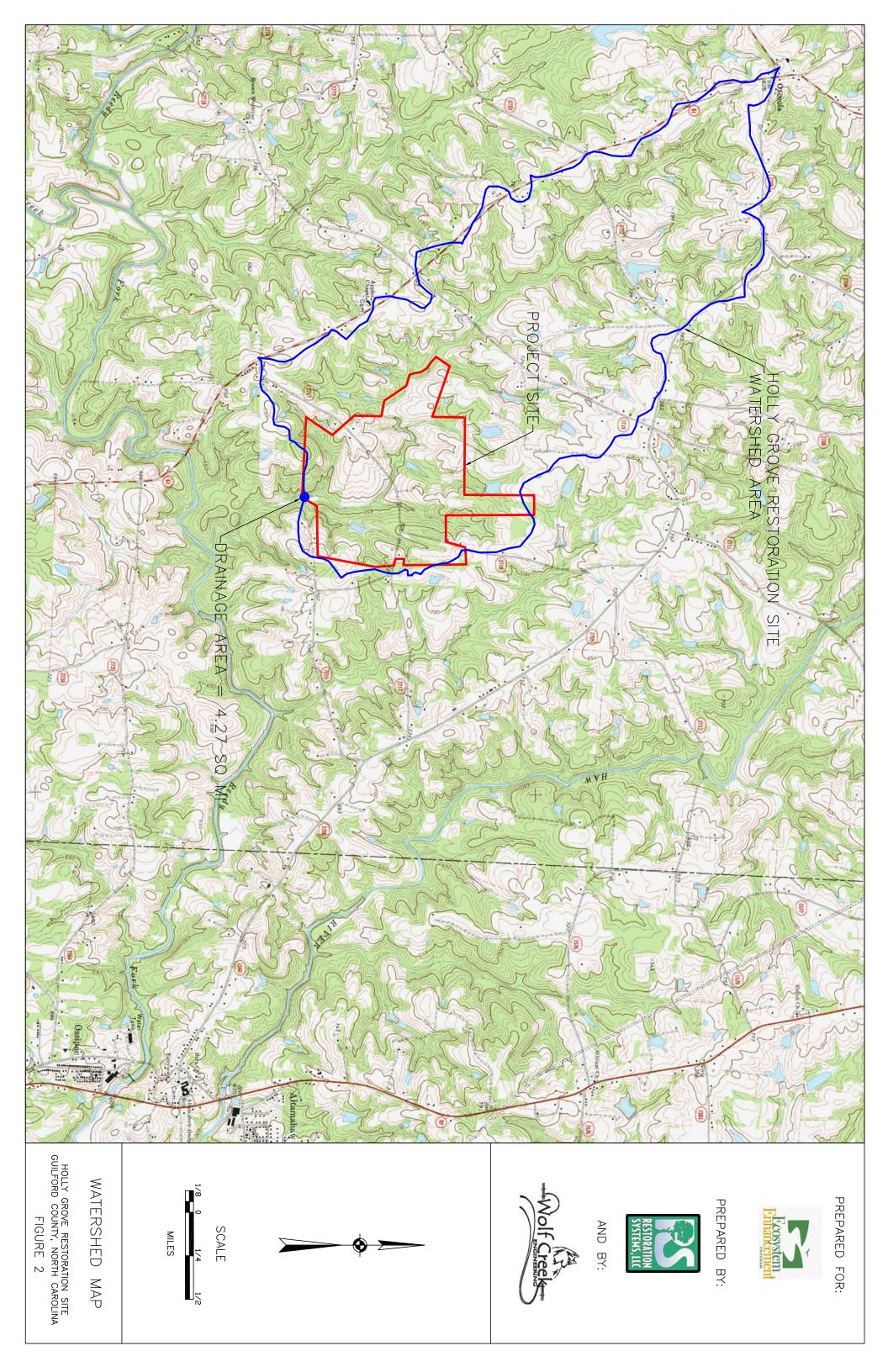
Table IV. Mapped Soils									
Soil Name	Map Symbol	Percent Slope	Drainage Class	Hydric Class					
Appling	Ap	2 to 10	Well drained	Non-Hydric					
Cecil	Cc	2 to 15	Well drained	Non-Hydric					
Chewacla	Ch	0 to 2	Somewhat Poorly drained	Hydric Inclusions					
Congaree	ee Co 0 to 2		Well drained	Non-Hydric					
Coronaca	Cr	2 to 10	Well drained	Non-Hydric					
Vance	Va	2 to 10	Well drained	Non-Hydric					
Wilkes	Wk	15 to 45	Well drained	Non-Hydric					

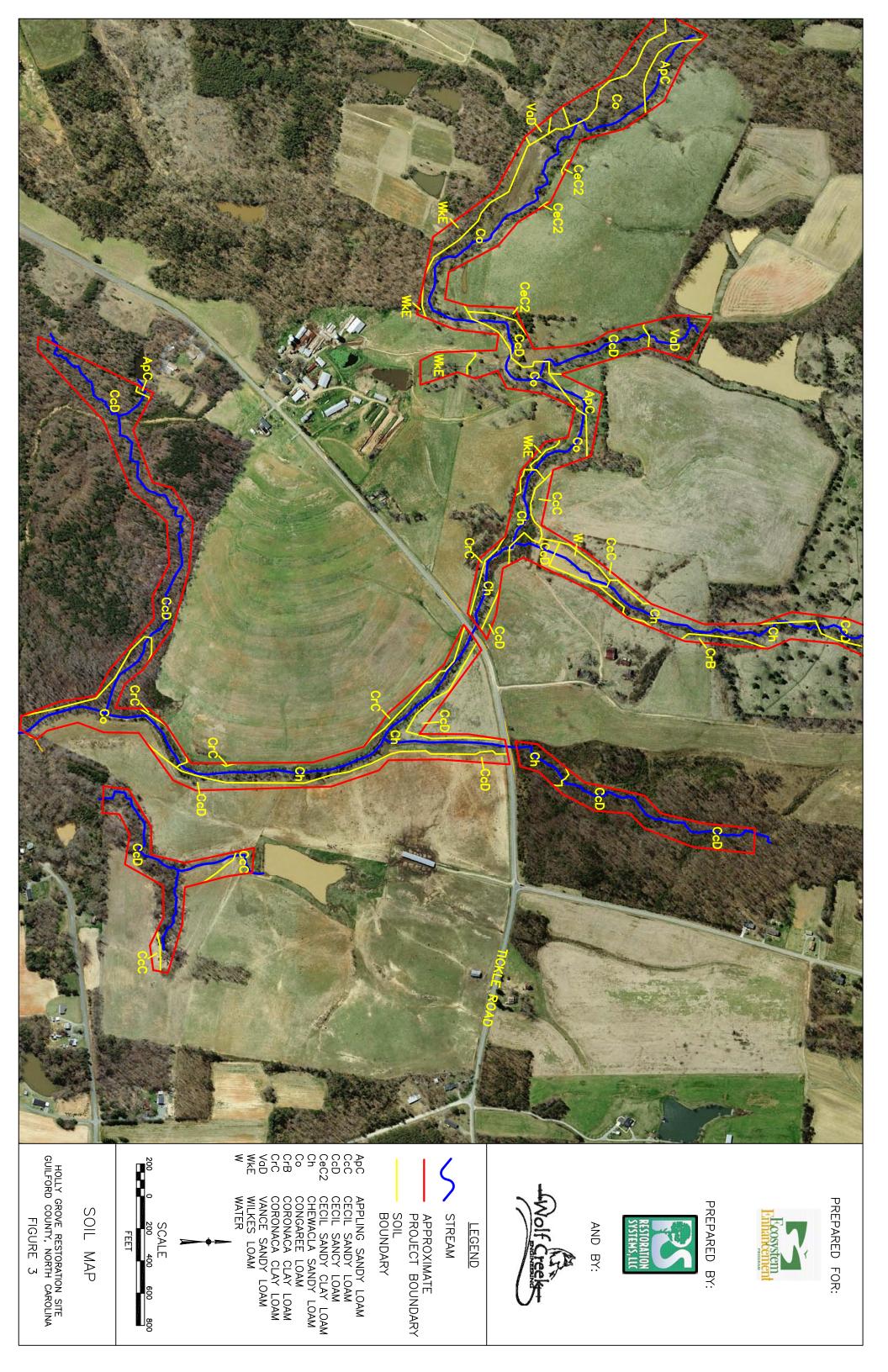
Table V. Land Use of Watershed							
Land UseAcresPercent of Total Area							
Agricultural	1500	55					
Forested	1040	38					
Residential	80	3					
Roadway	110	4					
Total	2730	100					

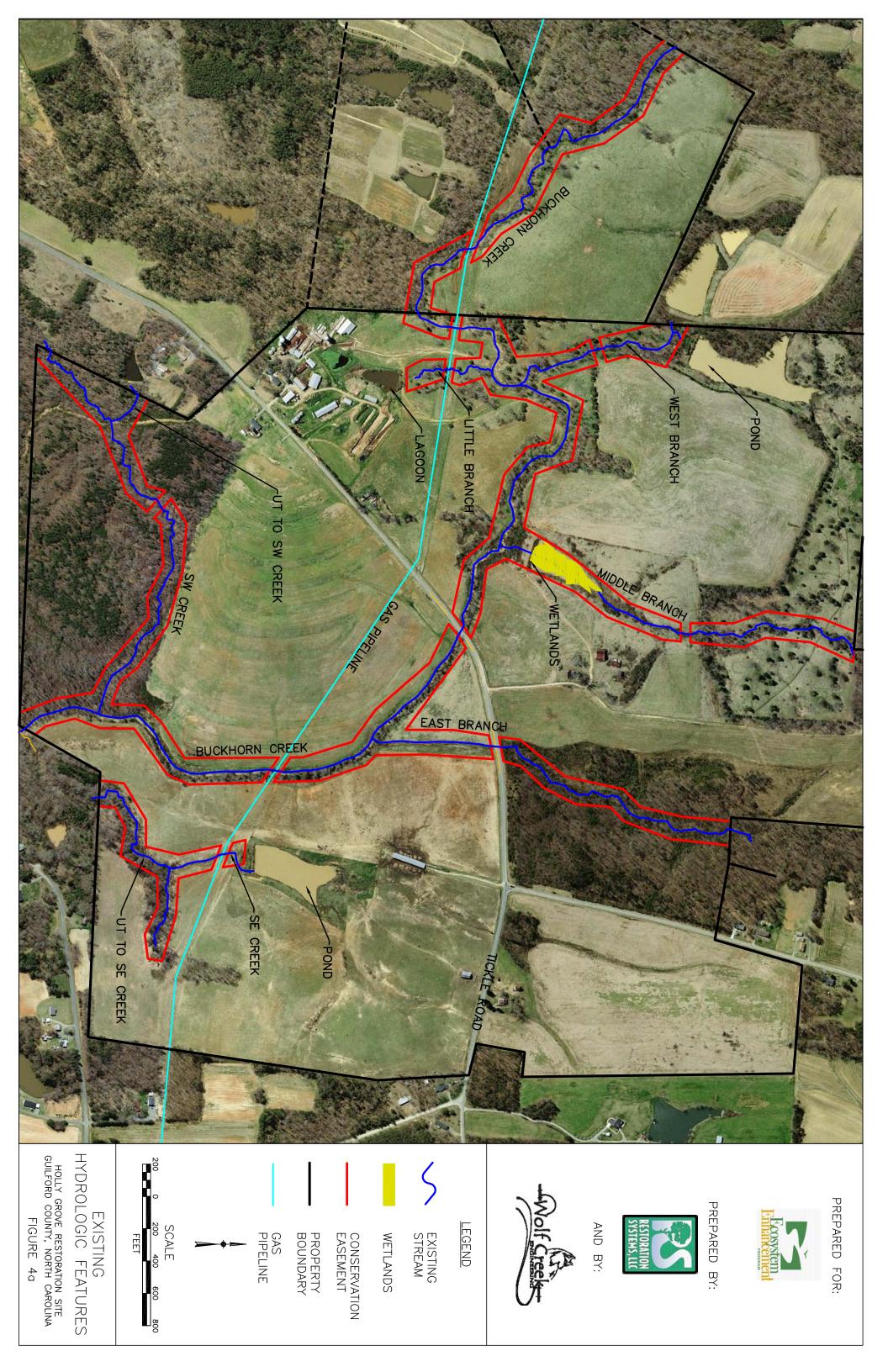
Table VIa. Morphologic Table							
	Existing Conditions	Reference Reach	Design				
	Buckhorn	Fork	Buckhorn	Buckhorn	Buckhorn		
Stream Reach	Creek Upper	Creek	Reach 1	Reach 2	Reach 3		
Stream Type	F4	B4c	B4c	B4c	B4c		
Drainage Area (mi ²)	2.78	2.2	2.78	3.04	3.24		
Bankfull Width (ft)	26	20.1	22	23	23		
Mean Depth (ft)	1.6	1.73	1.69	1.76	1.78		
Bankfull XS_{AREA} (ft ²)	42	34.8	37	40	41		
Bankfull Discharge (cfs)	186	163	186	198	207		
Bkf Mean Velocity (ft/s)	3.3	4.7	4.5	4.5	4.5		
Width/Depth Ratio	16	12	13	13	13		
Max. Riffle Depth (ft)	2.3	2.0	2.3	2.4	2.4		
Riffle Depth Ratio	1.4	1.2	1.36	1.36	1.35		
Max. Pool Depth (ft)	2.8	2.6	3.4	3.5	3.6		
Pool Depth Ratio	1.7	1.5	2.0	2.0	2.0		
Flood Prone Width (ft)	32	63	30 - 66	32 - 69	32 - 69		
Entrenchment Ratio	1.2	2.7 - 3.1	1.4 - 3.0	1.4 - 3.0	1.4 - 3.0		
Bank Height Ratio	2.3	1.2	1.0	1.0	1.0		
Meander Length (ft)	110 - 210	37 - 172	44 - 198	46 - 207	46 - 207		
Meander Length Ratio	4 - 8	1.8 - 8.6	2-9	2-9	2-9		
Radius of Curvature (ft)	50 - 120	47 - 318	44 - 66	46 - 69	46 - 69		
Rc Ratio	1.9 – 4.6	2.3 - 16	2-3	2-3	2-3		
Belt Width (ft)	45 - 120	33 - 40	33 - 66	34 - 69	34 - 69		
Meander Width Ratio	1.7 – 4.6	1.6 - 2.0	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0		
Sinuosity	1.17	1.05	1.2	1.2	1.2		
Channel Slope (ft/ft)	0.0041	0.0079	0.005	0.004	0.004		
Valley Slope (ft/ft)	0.005	_	0.006	0.005	0.005		
Riffle Slope (ft/ft)	0.006	0.013	0.005	0.004	0.004		
Riffle Slope Ratio	1.5	1.6	1.0	1.0	1.0		
Pool Slope (ft/ft)	0.0	0.001	0.0	0.0	0.0		
Pool Slope Ratio	0.0	0.1	0.0	0.0	0.0		
Pool Width (ft)	24	19.9	22	23	23		
Pool Width Ratio	0.9	1.0	1.0	1.0	1.0		
Pool Spacing (ft)	60 - 160	71 – 134	88 - 132	92 - 138	92 - 138		
Pool Spacing Ratio	2.3 - 6.2	3.5 - 6.7	4-6	4-6	4 - 6		
D ₅₀ (mm)	14	28	20	20	20		
D ₈₄ (mm)	29	81	40	40	40		

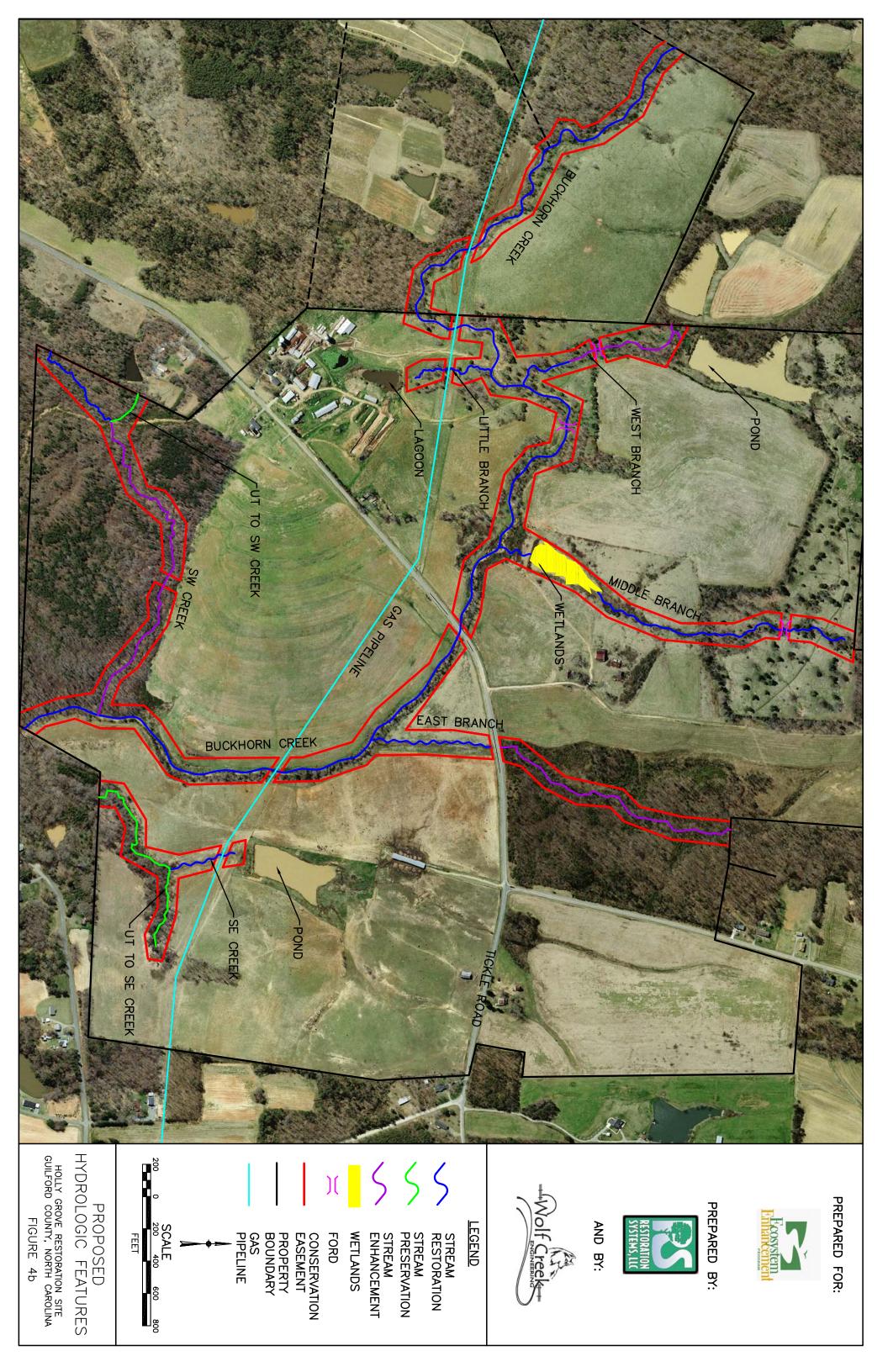
Table VIb. Morphologic Table							
	Existing Conditions	Reference Reach	Design				
	Buckhorn	Fork	Buckhorn	Buckhorn	Buckhorn		
Stream Reach	Creek Lower	Creek	Reach 4	Reach 5	Reach 6		
Stream Type	G4	B4c	B4c	B4c	B4c		
Drainage Area (mi ²)	3.76	2.2	3.51	3.76	4.02		
Bankfull Width (ft)	24	20.1	24	24.5	25		
Mean Depth (ft)	2.3	1.73	1.83	1.90	1.91		
Bankfull XS_{AREA} (ft ²)	55	34.8	44	47	48		
Bankfull Discharge (cfs)	230	163	220	230	240		
Bkf Mean Velocity (ft/s)	4.0	4.7	4.5	4.5	4.5		
Width/Depth Ratio	10	12	13	13	13		
Max. Riffle Depth (ft)	3.0	2.0	2.5	2.6	2.6		
Riffle Depth Ratio	1.3	1.2	1.36	1.36	1.35		
Max. Pool Depth (ft)	3.9	2.6	3.7	3.8	3.8		
Pool Depth Ratio	1.7	1.5	2.0	2.0	2.0		
Flood Prone Width (ft)	32	63	33 - 72	34 - 74	35 - 75		
Entrenchment Ratio	1.3	2.7 - 3.1	1.4 - 3.0	1.4 - 3.0	1.4 - 3.0		
Bank Height Ratio	2.0	1.2	1.0	1.0	1.0		
Meander Length (ft)	250 - 340	37 - 172	48-216	49 - 220	50 - 225		
Meander Length Ratio	10 - 14	1.8 - 8.6	2-9	2-9	2-9		
Radius of Curvature (ft)	140 - 240	47 - 318	48 - 72	49 - 74	50 - 75		
Rc Ratio	6 - 10	2.3 - 16	2-3	2-3	2-3		
Belt Width (ft)	40 - 80	33 - 40	36 - 72	37 - 74	37 – 75		
Meander Width Ratio	1.7 – 3.3	1.6 - 2.0	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0		
Sinuosity	1.04	1.05	1.2	1.2	1.2		
Channel Slope (ft/ft)	0.0054	0.0079	0.005	0.006	0.004		
Valley Slope (ft/ft)	0.006	-	0.006	0.007	0.005		
Riffle Slope (ft/ft)	0.008	0.013	0.005	0.006	0.004		
Riffle Slope Ratio	1.5	0.1	1.0	1.0	1.0		
Pool Slope (ft/ft)	0.0	0.001	0.0	0.0	0.0		
Pool Slope Ratio	0.0	0.1	0.0	0.0	0.0		
Pool Width (ft)	25	19.9	24	24.5	25		
Pool Width Ratio	1.04	1.0	1.0	1.0	1.0		
Pool Spacing (ft)	60 - 140	71 – 134	96 - 144	98 - 147	100 - 150		
Pool Spacing Ratio	2.5 - 6	3.5 - 6.7	4-6	4-6	4 - 6		
D ₅₀ (mm)	14	28	20	20	20		
D ₈₄ (mm)	29	81	40	40	40		


Table VIc. Morphologic Table							
	Existing Conditions	Reference Reach	Design				
Stream Reach	Middle Branch	Fork Creek	West Branch	Middle Br.	East Branch		
Stream Type	G4	B4c	B4c	B4c	B4c		
Drainage Area (mi ²)	0.2	2.2	0.2	0.2	0.2		
Bankfull Width (ft)	6.3	20.1	9	9	9		
Mean Depth (ft)	0.9	1.73	0.7	0.7	0.7		
Bankfull XS_{AREA} (ft ²)	5.5	34.8	6.3	6.3	6.3		
Bankfull Discharge (cfs)	28	163	28	28	28		
Bkf Mean Velocity (ft/s)	3.9	4.7	4.5	4.5	4.5		
Width/Depth Ratio	7	12	13	13	13		
Max. Riffle Depth (ft)	1.2	2.0	0.95	0.95	0.95		
Riffle Depth Ratio	1.3	1.2	1.3	1.3	1.3		
Max. Pool Depth (ft)	1.4	2.6	1.4	1.4	1.4		
Pool Depth Ratio	1.5	1.5	2.0	2.0	2.0		
Flood Prone Width (ft)	7.5	63	12 - 27	12 - 27	12 - 27		
Entrenchment Ratio	1.2	2.7 - 3.1	1.4 - 3.0	1.4 - 3.0	1.4 - 3.0		
Bank Height Ratio	1.7	1.2	1.0	1.0	1.0		
Meander Length (ft)	55 - 100	37 – 172	18-81	18 - 81	18 - 81		
Meander Length Ratio	9 – 16	1.8 - 8.6	2-9	2 - 9	2-9		
Radius of Curvature (ft)	45 - 150	47 - 318	18 - 27	18 - 27	18 - 27		
Rc Ratio	7 – 23	2.3 - 16	2-3	2 - 3	2-3		
Belt Width (ft)	40 - 60	33 - 40	13 – 27	13 - 27	13 – 27		
Meander Width Ratio	6 – 10	1.6 - 2.0	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0		
Sinuosity	1.06	1.05	1.2	1.2	1.2		
Channel Slope (ft/ft)	0.014	0.0079	0.013	0.013	0.014		
Valley Slope (ft/ft)	0.015	-	0.015	0.015	0.017		
Riffle Slope (ft/ft)	0.02	0.013	0.013	0.013	0.013		
Riffle Slope Ratio	1.4	0.1	1.0	1.0	1.0		
Pool Slope (ft/ft)	0.0	0.001	0.0	0.0	0.0		
Pool Slope Ratio	0.0	0.1	0.0	0.0	0.0		
Pool Width (ft)	8	19.9	9	9	9		
Pool Width Ratio	1.3	1.0	1.0	1.0	1.0		
Pool Spacing (ft)	30 - 100	71 – 134	36 - 54	36 - 54	36 - 54		
Pool Spacing Ratio	4.7 – 16	3.5 - 6.7	4-6	4-6	4-6		
D ₅₀ (mm)	-	28	20	20	20		
D ₈₄ (mm)	-	81	40	40	40		


Table VId. Morphologic Table							
	Existing Conditions	Reference Reach	Design				
	Middle	Fork	Little	SW	SE		
Stream Reach	Branch	Creek	Branch	Creek	Creek		
Stream Type	G4	B4c	B4c	B4c	B4c		
Drainage Area (mi ²)	0.2	2.2	0.02	0.09	0.14		
Bankfull Width (ft)	6.3	20.1	4	7.5	8		
Mean Depth (ft)	0.9	1.73	0.3	0.6	0.6		
Bankfull XS_{AREA} (ft ²)	5.5	34.8	1.2	4.2	4.9		
Bankfull Discharge (cfs)	28	163	5	15	21		
Bkf Mean Velocity (ft/s)	3.9	4.7	4.5	4.5	4.5		
Width/Depth Ratio	7	12	13	13	13		
Max. Riffle Depth (ft)	1.2	2.0	0.4	0.75	0.85		
Riffle Depth Ratio	1.3	1.2	1.3	1.3	1.3		
Max. Pool Depth (ft)	1.4	2.6	0.6	1.1	1.3		
Pool Depth Ratio	1.5	1.5	2.0	2.0	2.0		
Flood Prone Width (ft)	7.5	63	6 – 12	10-23	11 – 24		
Entrenchment Ratio	1.2	2.7 - 3.1	1.4 - 3.0	1.4 - 3.0	1.4 - 3.0		
Bank Height Ratio	1.7	1.2	1.0	1.0	1.0		
Meander Length (ft)	55 - 100	37 – 172	8-36	15 - 68	16 - 72		
Meander Length Ratio	9 – 16	1.8 - 8.6	2-9	2-9	2-9		
Radius of Curvature (ft)	45 - 150	47 - 318	8-12	15 - 23	16-24		
Rc Ratio	7 – 23	2.3 - 16	2-3	2-3	2-3		
Belt Width (ft)	40 - 60	33 - 40	6 – 12	11 – 23	12 - 24		
Meander Width Ratio	6 – 10	1.6 - 2.0	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0		
Sinuosity	1.06	1.05	1.2	1.2	1.2		
Channel Slope (ft/ft)	0.014	0.0079	0.020	0.016	0.007		
Valley Slope (ft/ft)	0.015	-	0.024	0.019	0.008		
Riffle Slope (ft/ft)	0.02	0.013	0.020	0.016	0.007		
Riffle Slope Ratio	1.4	0.1	1.0	1.0	1.0		
Pool Slope (ft/ft)	0.0	0.001	0.0	0.0	0.0		
Pool Slope Ratio	0.0	0.1	0.0	0.0	0.0		
Pool Width (ft)	8	19.9	4	7.5	8		
Pool Width Ratio	1.3	1.0	1.0	1.0	1.0		
Pool Spacing (ft)	30 - 100	71 – 134	16 – 24	30-45	32 - 48		
Pool Spacing Ratio	4.7 – 16	3.5 - 6.7	4-6	4-6	4-6		
D_{50} (mm)	-	28	20	20	20		
D_{84} (mm)	-	81	40	40	40		


Table VIII. Sediment Transport Analysis							
Location	Wetted	Hydraulic	Channel	Shear	Predicted		
	Perimeter	Radius	Slope	Stress	Particle		
	(ft)	(ft)	(ft/ft)	(lb/ft^2)	Range (mm)		
Buckhorn Creek – Reach 1	23.6	1.57	0.005	0.49	22 - 83		
Buckhorn Creek – Reach 2	24.7	1.64	0.004	0.41	19 – 89		
Buckhorn Creek – Reach 3	24.8	1.65	0.004	0.41	19 – 89		
Buckhorn Creek – Reach 4	25.8	1.71	0.005	0.53	24 - 98		
Buckhorn Creek – Reach 5	26.4	1.77	0.006	0.66	31-144		
Buckhorn Creek – Reach 6	26.9	1.78	0.004	0.44	20 - 97		
West Branch	9.7	0.65	0.013	0.53	24 - 96		
Middle Branch – U/s End	7.5	0.49	0.019	0.58	27 – 115		
Middle Branch – D/s End	9.6	0.62	0.013	0.50	23 - 88		
East Branch	9.6	0.62	0.014	0.54	25 - 102		
Little Branch	4.3	0.28	0.02	0.35	16 - 74		
SW Creek	8.0	0.53	0.016	0.53	24 - 96		
SE Creek	8.6	0.57	0.007	0.25	11 - 50		


Table IX. Designed Vegetative Communities (by zone)		
Streamside		
Shrubs Black willow (Salix nigra) Elderberry (Sambucus canadensis)	<u>Herbs/Seed Mixture</u> Swamp sunflower (<i>Helianthus angustifolius</i>) Ironweed (<i>Vernonia noveboracensis</i>)	
Silky dogwood (Cornus amomum) Silky willow (Salix sericea)	Swamp milkweed (Asclepias incarnata) Joe-pye-weed (Eupatorium fistulosum) Tearthumb (Polygonum sagittatum) Broomstraw (Andropogon virginicus) Deertongue (Panicum clandestimum) Switchgrass (Panicum virgatum)	
Floodplain		
<u>Trees</u> American sycamore(<i>Platanus occidentalis</i>) American elm (<i>Ulmus americana</i>) Green ash (<i>Fraxinus pennsylvanica</i>) River birch (<i>Betula nigra</i>) Hackberry (<i>Celtis laevigata</i>) Willow oak (<i>Quercus phellos</i>) Water oak (<i>Quercus nigra</i>) Tulip poplar (<i>Liriodendron tulipifera</i>) Black walnut (<i>Juglans nigra</i>) Shagbark hickory (<i>Carya ovata</i>) Bitternut hickory (<i>Carya cordiformis</i>) Swamp chestnut oak (<i>Quercus michauxii</i>)	Spicebush (Lindera benzoin) Witch hazel (Hamamelis virginiana) Tag alder (Alnus serrulata) Buttonbush (Cephalanthus occidentalis) Strawberry bush (Euonymus americanus) American beautyberry (Callicarpa americana) Waxmyrtle (Myrica cerifera) Highbush blueberry (Vaccinium corymbosum) American hazelnut (Corylus americana)	Herb/Seed Mixture Swamp sunflower (Helianthus angustifolius) Ironweed (Vernonia noveboracensis) Swamp milkweed (Asclepias incarnata) Joe-pye-weed (Eupatorium fistulosum) Tearthumb (Polygonum sagittatum) Broomstraw (Andropogon virginicus) Deertongue (Panicum clandestimum) Switchgrass (Panicum virgatum)
Upland Slope		
<u>Trees</u> American beech (<i>Fagus grandifolia</i>) American elm (<i>Ulmus americana</i>) White ash (<i>Fraxinus americana</i>) Bitternut hickory (<i>Carya cordiformis</i>) Black gum (<i>Nyssa sylvatica</i>) Northern red oak (<i>Quercus rubra</i>) White oak (<i>Quercus alba</i>) Persimmon (<i>Diospyros virginiana</i>)	<u>Shrubs</u> Serviceberry (<i>Amerlanchier arborea</i>) Redbud (<i>Cercis canadensis</i>) Flowering dogwood (<i>Cornus florida</i>) Hazelnut (<i>Corylus americana</i>) Deciduous holly (<i>Ilex decidua</i>) Southern arrow-wood (<i>Viburnum dentatum</i>)	<u>Herb/Seed Mixture</u> Big blue stem (Andropogon gerardii) Ironweed (Vernonia noveboracensis) Joe-pye-weed (Eupatorium fistulosum) Indian grass (Sorghastrum nutans) Switchgrass (Panicum virgatum) Eastern gama grass (Tripsacum dactyloides)


Figures 1-5

Appendix A. SITE Photographs

Buckhorn Creek: STA 103+50

Buckhorn Creek: STA 104+50

Buckhorn Creek: STA 110+50

Buckhorn Creek: STA 115+00

Buckhorn Creek: STA 121+25

Buckhorn Creek: STA 132+00

Buckhorn Creek: STA 134+00

Buckhorn Creek: STA 145+00

Buckhorn Creek: STA 156+00

Buckhorn Creek: D/S of Bridge

Buckhorn Creek

Buckhorn Creek

Little Branch: U/S End

Little Branch: D/S End

West Branch

West Branch: STA 308+00

West Branch: STA 310+50

Middle Creek: Wetlands

Middle Creek: Pond Outfall

Middle Creek: STA 401+25

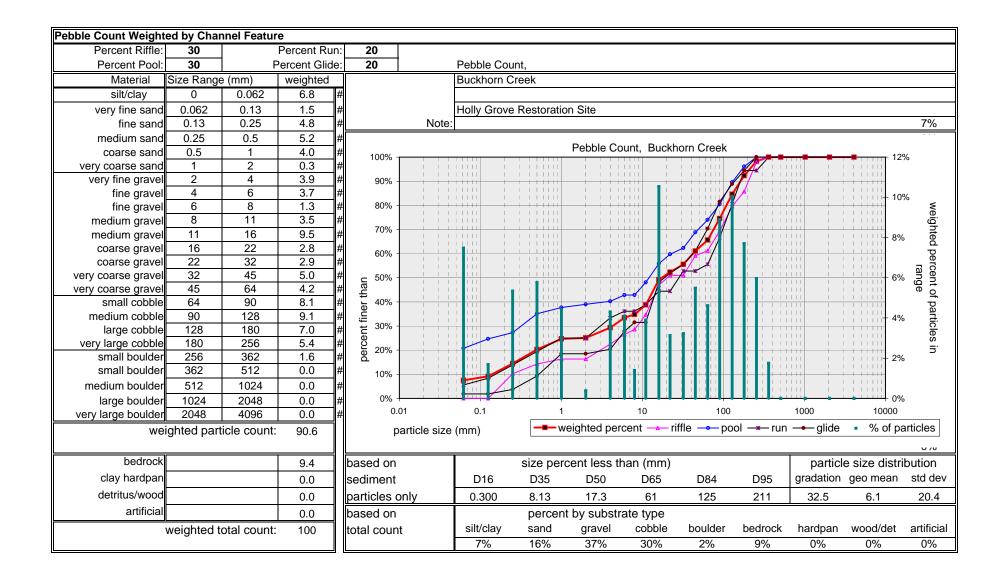
NCEEP

Middle Creek: STA 407+00

East Branch: D/S of Road

South West Creek

South West Creek


Appendix B. Existing SITE Stream Data

South East Creek: STA 702+00

South East Creek: STA 704+00

iffle Pebble Count						Riffle Pebb	le Count,							
Material	Size Range	e (mm)	Count			Buckhorn (Creek							
silt/clay	0	0.062		#										
very fine sand	0.062	0.13		#		Holly Grove	e Restoratio	n Site						
fine sand	0.13	0.25	5	#	Note									
medium sand	0.25	0.5	2	#										
coarse sand	0.5	1	1	#			Ri	ffle Pebble	Count, Bu	ckhorn Cree	ek			
very coarse sand	1	2		#					,					
very fine gravel	2	4	3	# 100% -							∎			7
fine gravel	4	6	2	# 90% -				i i						
fine gravel	6	8	1	# 30% -										6
medium gravel	8	11	3	# 80% -										
medium gravel	11	16	6	# 70% -							/ : : : :			5 -
coarse gravel	16	22	2	# 10 / 0 / 0 / 0	i i					7			1 1 1 1 1 1 1	number
coarse gravel	22	32	0	# 둔 60% -						€				. d
very coarse gravel	32	45	4	# 10% # 40% - # 40% - # 40% - # 40% - # 40% -										er of
very coarse gravel	45	64	1	# t 50% -					, , , , , , , , ,		i i i			, p
small cobble	64	90	4	# 🗄 40% -										f particles
medium cobble	90	128	5	# Je 2000										cle
large cobble	128	180	3	# ⁻ 30% -					_ 1 _					2 0
very large cobble	180	256	6	# 20% -					r ee					
small boulder	256	362	1	#							l l li li i			· 1
small boulder	362	512		# 10% -										
medium boulder	512	1024		# 0% -										0
large boulder	1024 2048	2048 4096		# # 0.	01	0.1		1	10	1(00	1000	100	00
very large boulder			49	#			particle size	(mm)	-]	-∎ cumu			
	iotal part	ticle count:	49					, (1111)		l				000
bedrock			5	based on			size perc	ent less t	han (mm)			particl	e size distr	ibution
clay hardpan				sediment		D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				particles on	ly	0.895	11.10	20.3	75	164	235	15.4	12.1	13.5
artificial				based on			percent	by substr						
	t	otal count:	54	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificia
						0%	15%	41%	33%	2%	9%	0%	0%	0%

- -

r=

Material	Size Range	e (mm)	Count			Buckhorn C	Creek							
silt/clay	0	0.062	16	#										
very fine sand	0.062	0.13	3	#		Holly Grove	e Restoratior	i Site						
fine sand	0.13	0.25	2	#	Note:									
medium sand	0.25	0.5	6	#										
coarse sand	0.5	1	2	#			Po	ol Pebble	Count, Bu	ckhorn Cree	k		- 40	
very coarse sand	1	2	1	" 100% -									18	5
very fine gravel	2	4	1	# 90% -	i i		1 1 1 1 1 1 1					111 1 1		
fine gravel	4	6	2	#	i i					/)
fine gravel	6	8	0	# 80% -						_			- 14	L
medium gravel	8	11	4	#										r
medium gravel	11	16	6	# ⊆ ^{70% -}									- 12	2 2
coarse gravel	16	22	3	- *00 - *00 - *00 - *00 - *00 - *00	1 1			1 1 1						number
coarse gravel	22	32	2	# 19 00%	i i							111 1	+ 10) ğ
very coarse gravel	32	45	5	# : <u>-</u> 50% -										of
very coarse gravel	45	64	4	# te									8	particles
small cobble	64	90	5	# 2 40% -				_₽~₽						rtic
medium cobble	90	128	7	# <u> </u>	i i								- 6	les
large cobble	128	180	5	# 30% -	1 1				1 1 1 1 1	i i t i ii t				
very large cobble	180	256	3	# 20% -								-+++++	- 4	
small boulder	256	362		#										
small boulder	362	512		# 10% -		+ + + + + + + + + + + + + + + + + + + +						++++	2	
medium boulder	512	1024		#	i i			- 1 - 1						
large boulder	1024	2048		# 0% +										
very large boulder	2048	4096		# 0.0	01	0.1	1		10	100		1000	10000	
	total part	icle count:	77			р	article size (mm)			— ∎ — cumi	ulative %	 # of pa 	articles
bedrock			12	based on			size perc	ent less tl	nan (mm)			particl	e size distri	ibutior
clay hardpan				sediment		D16	D35	D50	D65	D84	D95		geo mean	
detritus/wood				particles on	v	0.062	0.50	12.1	37	103	170	101.7	2.5	40.
artificial				based on				by substr	ate type			<u>.</u>		-
	t	otal count:	89	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artific
		otar oount.	00			18%	16%	30%	22%	0%	13%	0%	0%	0%

- -

r=

Run Pebble Count					Run Pebble	e Count							
	Size Range	e (mm)	Count		Buckhorn (
silt/clay	0	0.062	2	#	200101011								
very fine sand	0.062	0.13	1	#	Holly Grove	e Restoratio	n Site						
fine sand	0.13	0.25	2	# Note									
medium sand	0.25	0.5	2	#	·								
coarse sand	0.5	1	2	#		R	un Pebble	Count, Buc	khorn Creel	ĸ			
very coarse sand	1	2	0	# 100%								6	
very fine gravel	2	4	3	# 90%						──── ───			
fine gravel	4	6	1	#						∕_: ::::			
fine gravel	6	8	0	# 80%					+ + + + + + + + + + + + + + + + + + + +			J	
medium gravel	8	11	1	# 70%					/				
medium gravel	11	16	2	#					:::: /			4 2	
coarse gravel	16	22	0	# usu 60% + + + + + + + + + + + + + + + + + + +						-		3 articles	
coarse gravel	22	32	3	#					<u></u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3 9	
very coarse gravel	32 45	45 64	0	# the									•
very coarse gravel small cobble	45 64	64 90	4	# 2 40%									
medium cobble	90	128	5	# <u>0</u> # 30%								- 2 ^w	
large cobble	128	120	5	# 0070			∮ _ ∎∕`						
very large cobble	120	256	0	# 20% -									
small boulder	256	362	2	# 10% -			i i	i iii ii		<u> i i i i i i i i i i i i </u>		1 1 1 1 1 1	
small boulder	362	512	0	#	N								
medium boulder	512	1024	-	# 0%							1		
large boulder	1024	2048		" # 0.01	0.1		1	10	100		1000	10000	
very large boulder	2048	4096		#		particle size	ze (mm)						
	total part	icle count:	36					-	← cumulativ	ve%	# of part	icles	
bedrock			3	based on		size per	cent less t	han (mm)			particl	e size distr	ibution
clay hardpan				sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				particles only	0.325	5.10	28.2	86	139	265	45.9	6.7	20.7
artificial				based on		percent	t by substi	rate type			·		
	t	otal count:	39	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
					5%	18%	28%	36%	5%	8%	0%	0%	0%

_ _

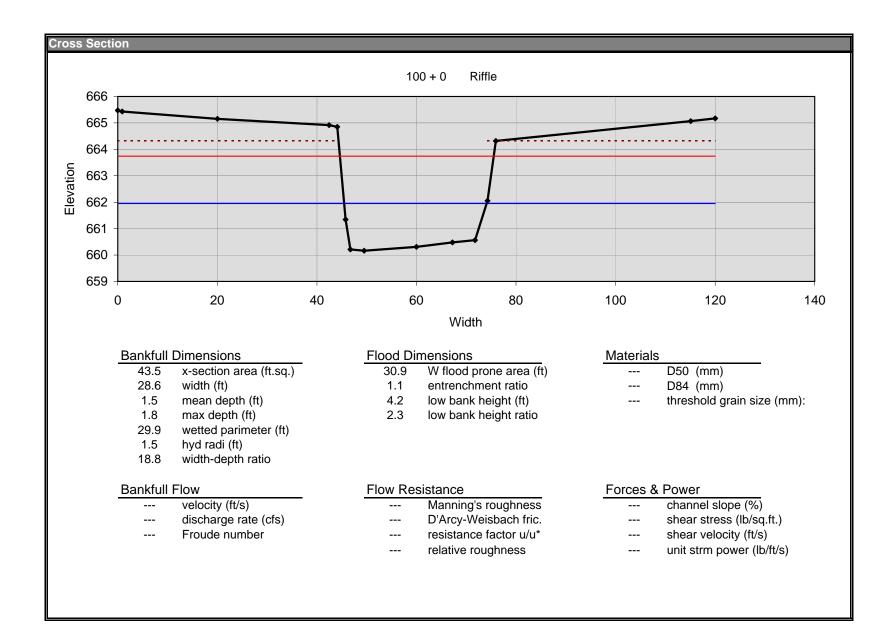
de Pebble Count	0: 0	()	0		Glide Pebb	,							
	Size Range		Count		Buckhorn C	Sreek							
silt/clay	0	0.062	1	#									
very fine sand	0.062	0.13		#		e Restoration	Site						
fine sand	0.13	0.25	1	#N	ote:								
medium sand	0.25	0.5	3	#									
coarse sand	0.5	1	5	#		Glie	de Pebble	Count, Bu	ckhorn Cree	ek			4.0
very coarse sand	1	2		# 100%									10
very fine gravel	2	4	1	# 90% -	<u> </u>	<u> </u>	i i i	<u> </u>					9
fine gravel	4	6	4	#						;∕− : : :	11111		•
fine gravel	6	8	2	# 80%					<u> </u>				8
medium gravel	8	11	0	# 700/									7
medium gravel	11	16	9	# <u>6</u> 70% —									′ 2
coarse gravel	16	22	2	# 10% # 40% # 50% # 40% # 40%									number
coarse gravel	22	32	2	# ja									
very coarse gravel	32	45	3	# ≟ 50% —									5 약
very coarse gravel	45	64	5	# 100/					1 1 1 1 1		1 1 1 1 1 1		particles 4 c
small cobble	64	90	6	# 26 40%	1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1	1 1 111 /	1 1 1 1 1	1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	4 ticl
medium cobble	90	128	4	# <u>a</u> 30% —									3 [%]
large cobble	128	180	3	#									-
very large cobble	180	256	3	# 20%			ͷ╺╸╴	┛╵╹╵	<u> </u>				2
small boulder	256	362		# 10%			i i i				1 1 1 1 1		1
small boulder	362	512		# 10%	1 1 1 1 1 11								I
medium boulder	512	1024		# 0% -	┊┊┆┆╻ <mark>╷</mark>					▋ <mark>┥╴┛╴╴</mark> ╹			0
large boulder	1024	2048		# 0.01	0.1		1	10	1	00	1000	100	00
very large boulder	2048	4096		#	0.1		•						
	total part	icle count:	54				р	article size	(mm)		ulative %	# of parti	cles
	1										1		
bedrock			3	based on		size perce						e size distr	
clay hardpan				sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std de
detritus/wood				particles only	0.828	11.91	18.8	52	101	186	14.0	9.2	11.1
artificial				based on		percent	by substr	ate type					
	te	otal count:	57	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artific
			-		2%	16%	49%	28%	0%	5%	0%	0%	0%

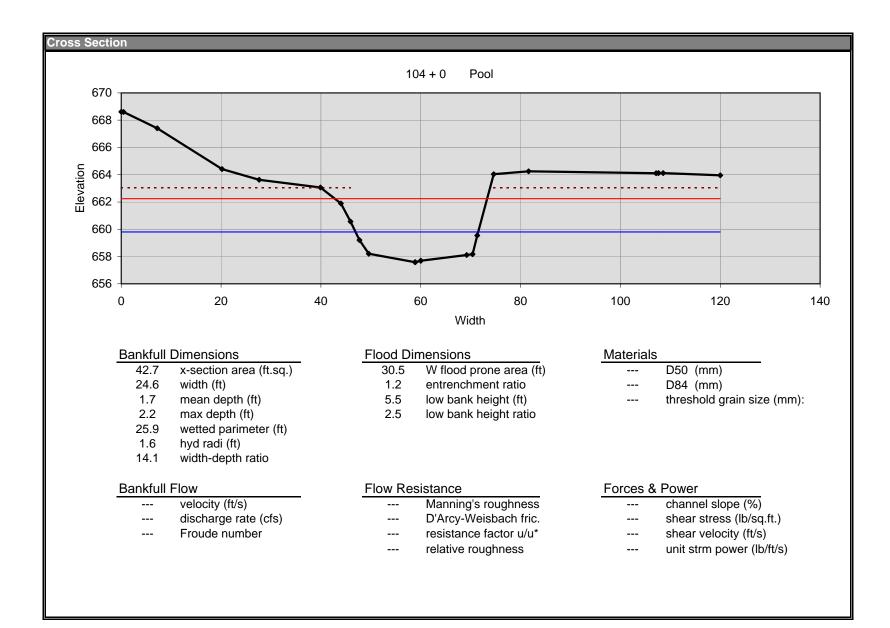
_ _

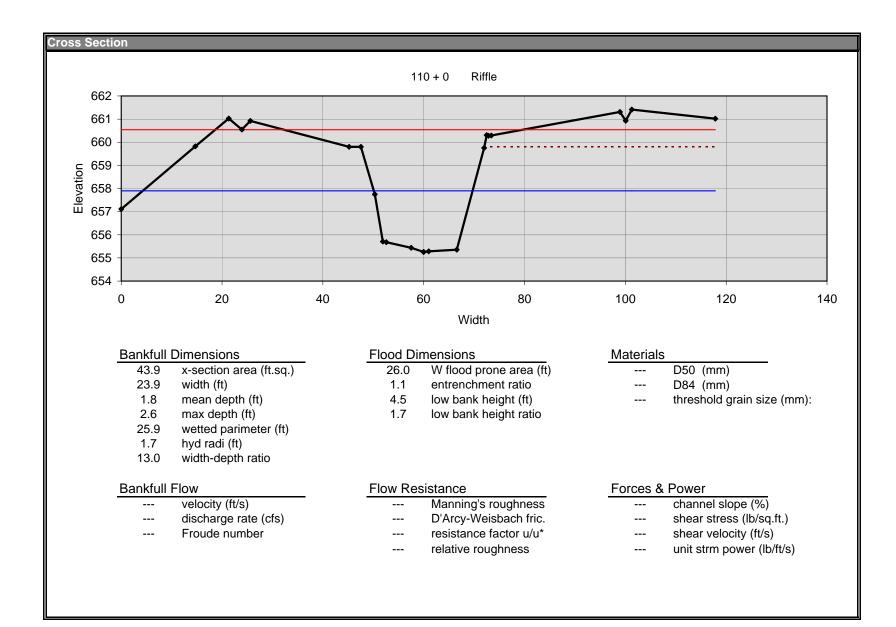
Material	Size Rang	ae (mm)	Count	1 Г		SW Creek	- Downstre	am Reach	า					
silt/clay	0	0.062	1	##		Holly Grove	e Site							
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25	2	##	Not	e:								
medium sand	0.25	0.5	1	##		•								
coarse sand	0.5	1	2	##			Pebble	Count, S	W Creek - I	Downstrear	n Reach			
very coarse sand	1	2		##	100%						<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			20
very fine gravel	2	4	1	##	90%									18
fine gravel	4	6	3	##										10
fine gravel	6	8	3	##	80%									16
medium gravel	8	11	9	##	60%									14 -
medium gravel	11	16	11	##	£ /0%					1				14 number
coarse gravel	16	22	15	##	e 60%									12 g
coarse gravel	22	32	18	##	₩									P P
very coarse gravel	32	45	17	##	କ୍ତି 50% –									10 <u>약</u>
ery coarse gravel	45	64	8	##	a 40%									particles
small cobble	64	90	7	##										icle
medium cobble	90	128	1	##	30%				/				· · · · · · · · · · · · · · · · · · ·	^ی ہ 6
large cobble	128	180	1	##	20%				<u>i i i i i i jí</u>					4
very large cobble	180	256		##	2070									-
small boulder	256	362		##	10%									2
small boulder	362	512		##	00/									~
medium boulder	512	1024		## ##	0%			4			400	1000	4000	0
large boulder	1024	2048		## ##	0.01	0.1		I	10		100	1000	1000	JU
very large boulder	2048	4096	100	##				p	particle size	e (mm) 🛛 🖵	-	thus 01	11 af	
	total parti	cle count:	100							_	■— cumula	ative %	# of particl	es
bedrock				b	ased on		size perce	ent less th	han (mm)			particl	e size distr	ibutior
clay hardpan				s	ediment	D16	D35	D50	D65	D84	D95		geo mean	
detritus/wood				D	articles only	8.896	16.69	22.9	31	47	78	2.3	20.5	2.3
artificial					ased on			by substr	-		-	-		
	to	otal count:	100		otal count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artifi
				``		1%	5%	85%	9%	0%	0%	0%	0%	0%

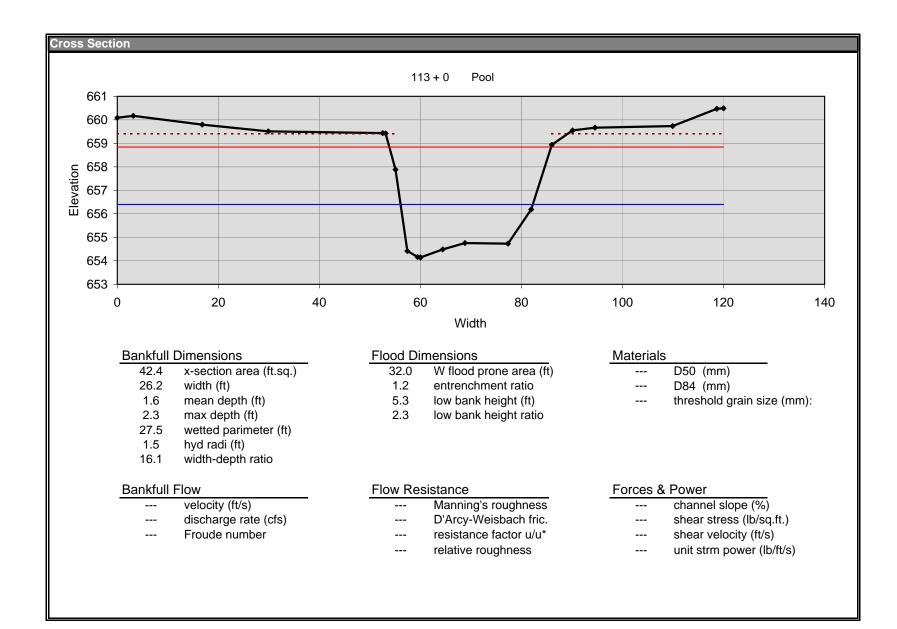
Material	Size Rang	ie (mm)	Count			SW Creek -	Upstream	Reach						
silt/clay	0	0.062	8	##		Holly Grove								
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25	9	##	Note:									
medium sand	0.25	0.5	1	##										
coarse sand	0.5	1	5	##			Pebble	Count, S	SW Creek -	Upstream	Reach			
very coarse sand	1	2		## 100%						p	<u>_</u> ₩₩₩₩			14
very fine gravel	2	4	9	## 90%	i									
fine gravel	4	6	11	##				ii i				i i i i i i i i i i i i i i i i i i i		12
fine gravel	6	8	9	## 80%	-					F				
medium gravel	8	11	10	## 70% %00 bercent tiner than ## 50% %0% 40%										10 _
medium gravel	11	16	13	## 1,0%					7					nnu
coarse gravel	16	22	8	## <u>e</u> 60%					<u>-</u>					number 8
coarse gravel	22	32	4	## ff F0%	1									
very coarse gravel	32	45	6	## 50%	1									, p
very coarse gravel	45	64	7	## 8 40%		1			· · · · · · · · · · · · · · · · · · ·					of particles
small cobble	64	90	2	##	1									cle
medium cobble	90	128	1	## 30%					╱╹╴╴					4 ^o
large cobble	128	180		## 	1		· · · · · · · ·	↓ – •						
very large cobble	180	256		##	1									2
small boulder	256	362 512		## 10%										
small boulder medium boulder	362	1024		## ## 0%	1			ii i						0
large boulder	512 1024	2048			.01	0.1		1	10		100	1000	1000	•
very large boulder	2048	4096		## U	.01	0.1		I	-		100	1000	1000	
very large boulder	total parti		103					p	particle size	(mm)	- cumula	ative %	# of partic	
			105									uuvo /0 =		100
bedrock				based on			size perce	nt less tl	han (mm)			particl	e size distr	ibutior
clay hardpan				sediment		D16	D35	D50	D65	D84	D95		geo mean	
detritus/wood				particles only	,	0.240	4.64	7.9	13	31	57	18.3	2.7	11.
artificial				based on			percent b	ov substr	-	-	-			
	tr	tal count:	103	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artifi
		ar oount.	100			8%	15%	75%	3%	0%	0%	0%	0%	0%

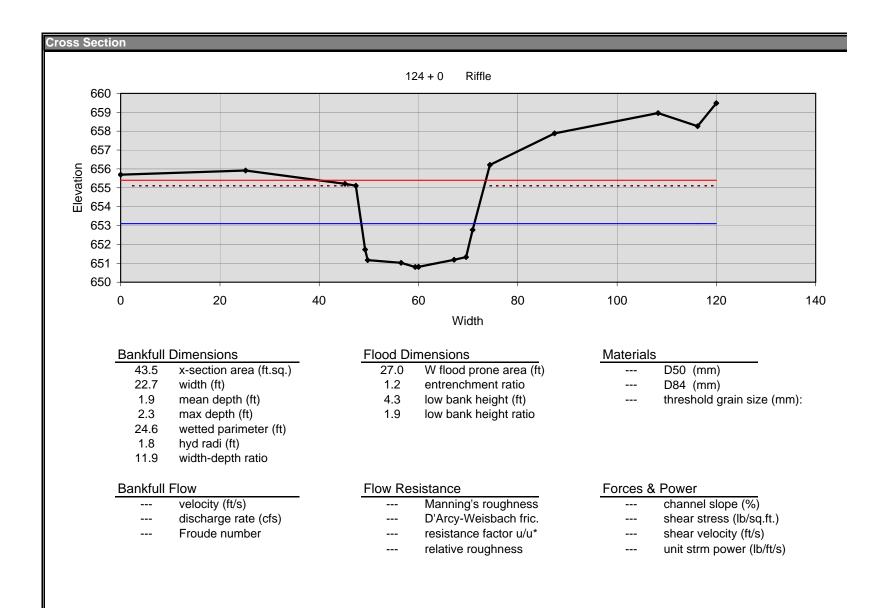
Bar Sample				_				Bar San	nple,					
material	size range	(mm)	weight] [SW Cre	ek - Paven	nent				
silt/clay	0	0.062		##				Holly Gr	rove Site					
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25		##			Note	e: Largest	t Particles:	35mm & 31	mm			
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##					Bar Sam	ple, SW Cree	k - Pavement			
very coarse sand	1	2		##	1	100% T								350
very fine gravel	2	4	43	##		90% -								
fine gravel	4	6	95	##		80% -								300
fine gravel	6	8		##			i i i							250 7
medium gravel	8	11	237	##	percent finer than	70% -								250 number 200 er
medium gravel	11	16		##	er th	60% -								200 0
coarse gravel	16	22	329	##	fine	50% -				· · · · · · · · · · · · · · · · · · ·				200 r of
coarse gravel	22	32		##	ent	40% -								150 ဆိ
very coarse gravel	32	45		##	srce									150 particles
very coarse gravel	45	64		##	pe	30% -								100 😨
small cobble	64	90		##		20% -								
medium cobble	90	128		##		10% -							<u> </u>	50
large cobble		180		##										
very large cobble		256		##		0% +								0
small boulder	256	362		##		0.0	01	0.1	1	10	100	1000	100	00
small boulder	362	512		##						particle size				
medium boulder	512	1024		##								-cumulative	% ∎ #o	f particles
large boulder		2048		##								_		
very large boulder		4096		##			size pe	ercent less	s than (mm)		particl	e size distr	ibution
	Total Par	ticle Count:	704		D16		D35	D50	D65	D84	D95	gradation	geo mean	std dev
					5.384		9.25	10.7	17	20	21	1.9	10.3	1.9

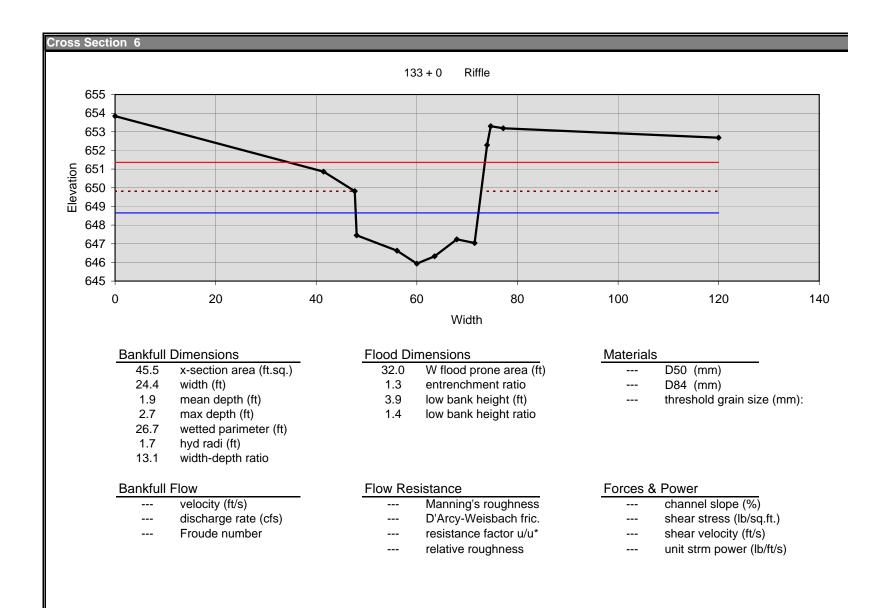

Bar Sample				_				Bar Sa	mple,					
material	size range	(mm)	weight] [SW Cr	eek - Sub-p	pavement				
silt/clay	0	0.062		##				Holly G	Grove Site					
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25		##			Note	e: Larges	st Particles	s: 37mm & 30	Omm			
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##					Bar Samp	le, SW Creek	- Sub-paveme	ent		
very coarse sand	1	2		##		100%]					,	• • • • •		800
very fine gravel	2	4	379	##		90% -								700
fine gravel	4	6	734	##		80% -								700
fine gravel	6	8		##						- I I I I I I I I I I I			· · · · · · · · · · · ·	600 _
medium gravel	8	11	753	##	percent finer than	70% -								500 be
medium gravel	11	16		##	ir th	60% -				/			<u> </u>	500 nb
coarse gravel	16	22	590	##	fine	50% -							· · · · · · · · · · · · · · · · · · ·	400 역
coarse gravel	22	32		##	ent									
very coarse gravel	32	45		##	erce	40% -							<u> </u>	300 ganticles
very coarse gravel	45	64		##	pe	30% -								200 8
small cobble	64	90		##		20% -				<u> </u>				200
medium cobble		128		##		10% -								100
large cobble		180		##										
very large cobble		256		##		0% -								0
small boulder	256	362		##		0.0	J1	0.1	1	10	100	1000	100	00
small boulder		512		##						particle size				
medium boulder	512	1024		##								- cumulative	% • #o	f particles
large boulder		2048		##										
very large boulder	2048	4096		##			size pe	ercent les	s than (mn	n)		particl	e size distr	ibution
	Total Par	ticle Count:	2456		D16	6	D35	D50	D6	5 D84	D95	gradation	geo mean	std dev
					4.03	1	5.22	8.4	10) 18	21	2.1	8.5	2.1

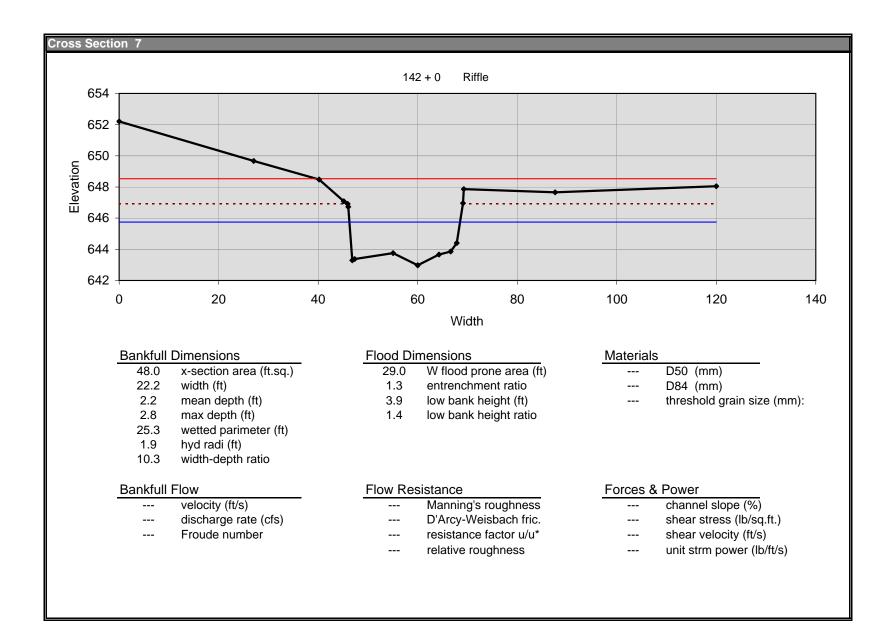

Bar Sample				_				Bar S	Samp	ole,						
material	size range	(mm)	weight	1 [North	n Bra	nch - Pav	rement					
silt/clay	0	0.062		##				Holly	Gro	ve Site						
very fine sand	0.062	0.13		##												
fine sand	0.13	0.25		##			Note	: Larg	est F	Particles:	19mm & 1	18mm				
medium sand	0.25	0.5		##												
coarse sand		1		##						Bar Sampl	e, North Br	anch - Pavemer	nt			
very coarse sand	1	2		##	1	^{00%} T				-					F 120	
very fine gravel	2	4	34	##		90% -										
fine gravel	4	6	63	##		80% -		1 1 1 1 1							- 100	
fine gravel		8		##				1 1 1 1 1	1 1						-	-
medium gravel	8	11	101	##	percent finer than	70% +		1 1 1 1 1							- 80	number
medium gravel		16		##	er th	60% 🕂									20	he
coarse gravel	16	22	0	##	fine	50% -		1 1 1 1 1								r of
coarse gravel	22	32		##	, ut										τ	D a
very coarse gravel	32	45		##	PLCE	40% +		1 1 1 1 1							- 40	particles
very coarse gravel	45	64		##	be	30% +		1 1 1 1 1							-0 2	les
small cobble	64	90		##		20% 🕂		1 1 1 1 1		+ + + + + + + + + + + + + + + + + + +						
medium cobble		128		##		10% -					- 7 · · · · ·				- 20	
large cobble	128	180		##											_	
very large cobble		256		##		0% +			1						⊦0	
small boulder		362		##		0.0	1	0.1		1	10	100	1000	10	000	
small boulder		512		##							particle siz					
medium boulder	_	1024		##									- cumulative	% • #	of partio	cles
large boulder	1024	2048		##												
very large boulder	2048	4096		##			size pe	ercent l	ess t	han (mm)			partic	le size dis	ributio	n
	Total Par	ticle Count:	198	╢║	D16		D35	D	50	D65	D84	4 D95	gradation	geo mea	n std	dev
					3.815		5.02	8	5.1	9	10	11	1.7	6.2	1	1.6

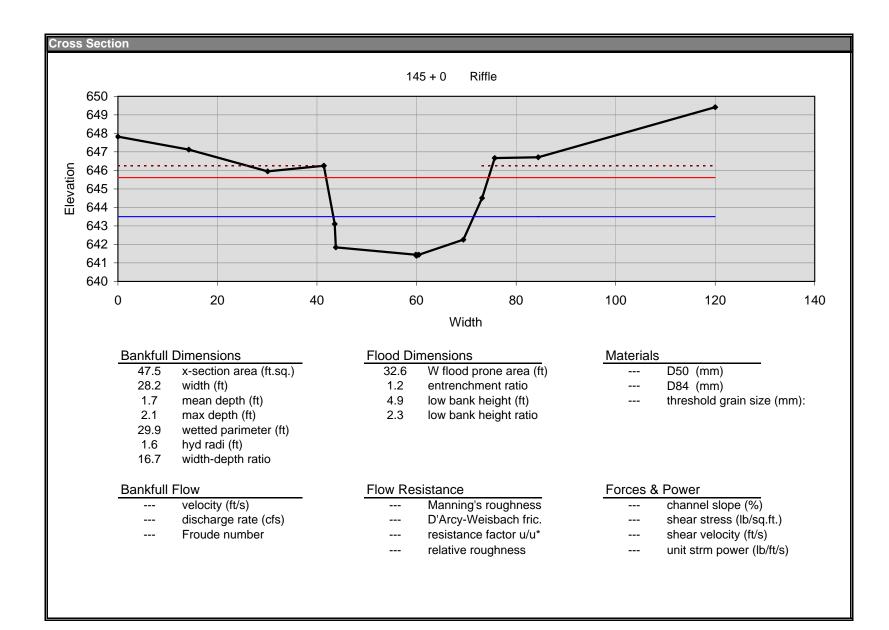

Bar Sample				_				Bar Sa	mple,					
material	size range	(mm)	weight] [North E	Branch - Su	b-Pavement				
silt/clay	0	0.062		##				Holly C	Grove Site					
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25		##			Note	e: Larges	st Particles	: 24mm & 2 [°]	1mm			
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##					Bar Sample	, North Brand	ch - Sub-Paverr	nent		
very coarse sand	1	2		##		100% -						••••		400
very fine gravel	2	4	243	##		90% -								350
fine gravel	4	6	349	##		80% -								330
fine gravel	6	8		##				1 1 1 1 1 1						300 _
medium gravel	8	11	263	##	sercent finer than	70% -								250 pumbe
medium gravel	11	16		##	ir th	60% -								250 ng
coarse gravel	16	22	72	##	fine	50% -					1 I I I I I I I I I I I I I I I I I I I		· · · · · · · · · · · · · · · · · · ·	200 9
coarse gravel	22	32		##	ent									pa
very coarse gravel	32	45		##	erce	40% -								particles
very coarse gravel	45	64		##	ре	30% -								100 8
small cobble	64	90		##		20% -				/			· · · · · · · · · · · · · · · · · · ·	100
medium cobble		128		##		10% -								50
large cobble		180		##										
very large cobble		256		##		0% -								0
small boulder	256	362		##		0.0	01	0.1	1	10	100	1000	100	00
small boulder		512		##						particle size				
medium boulder	512	1024		##								- cumulative	% • #o	f particles
large boulder		2048		##										
very large boulder	2048	4096		##			size p	ercent les	s than (mm	າ)		particl	e size distr	ibution
	Total Par	ticle Count:	927]	D16	6	D35	D50	D65	5 D84	D95	gradation	geo mean	std dev
					3.05	3	4.40	5.2	8	10	18	1.8	5.5	1.8

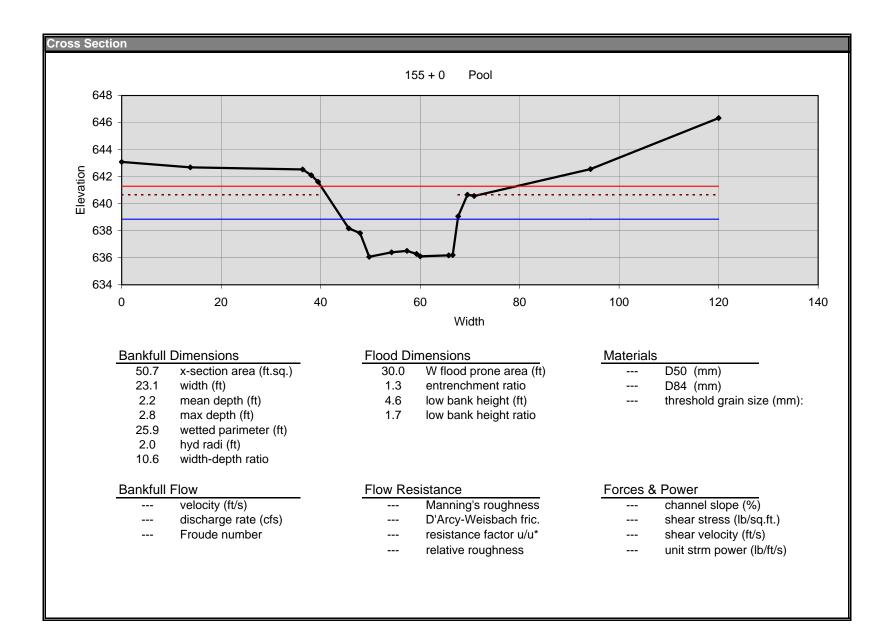

Bar Sample				_			Bar Sam	nple,					
material	size range	(mm)	weight] [Buckhor	n - Paveme	nt				
silt/clay	0	0.062		##			Holly Gro	ove Site					
very fine sand	0.062	0.13		##									
fine sand	0.13	0.25		##		Note	e: Largest	Particles: '	17mm & 14r	mm			
medium sand	0.25	0.5		##									
coarse sand	0.5	1		##				Bar Samp	ole, Buckhorn	n - Pavement			
very coarse sand	1	2		##	100%				_				- 80
very fine gravel	2	4	73	##	90%								70
fine gravel	4	6	67	##	80%					1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		- 70
fine gravel	6	8		##		1 1			1			· · · · · · · · · ·	- 60 _
medium gravel	8	11	46	##	00% 70% 60% 60% 60% 60% 60% 60% 60% 60% 60% 6								- 50 numbe
medium gravel	11	16		##	1 5 60%								- 50 pe
coarse gravel	16	22	0	##	iji 50%							· · · · · · · · · · · · · · · · · · ·	- 40 9
coarse gravel	22	32		##		1 I I							ра
very coarse gravel	32	45		##	<u>ଞ</u> 40%	1 1							particles
very coarse gravel	45	64		##	<u>පී</u> 30%								- 20 8
small cobble	64	90		##	20%						- I I I I I I I I I I I I I I I I I I I		- 20
medium cobble		128		##	10%							· · · · · · · · · · · · · · · · · · ·	- 10
large cobble		180		##									
very large cobble		256		##	0%								- 0
small boulder	256	362		##		0.01	0.1	1	10	100	1000	100	000
small boulder		512		##					particle size				
medium boulder	512	1024		##							-cumulative	% • # 0	f particles
large boulder		2048		##									
very large boulder	2048	4096		##		size p	ercent less	than (mm)			particle	e size distri	bution
	Total Part	ticle Count:	186]	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
					2.653	3.71	4.5	5	9	10	1.8	4.9	1.8

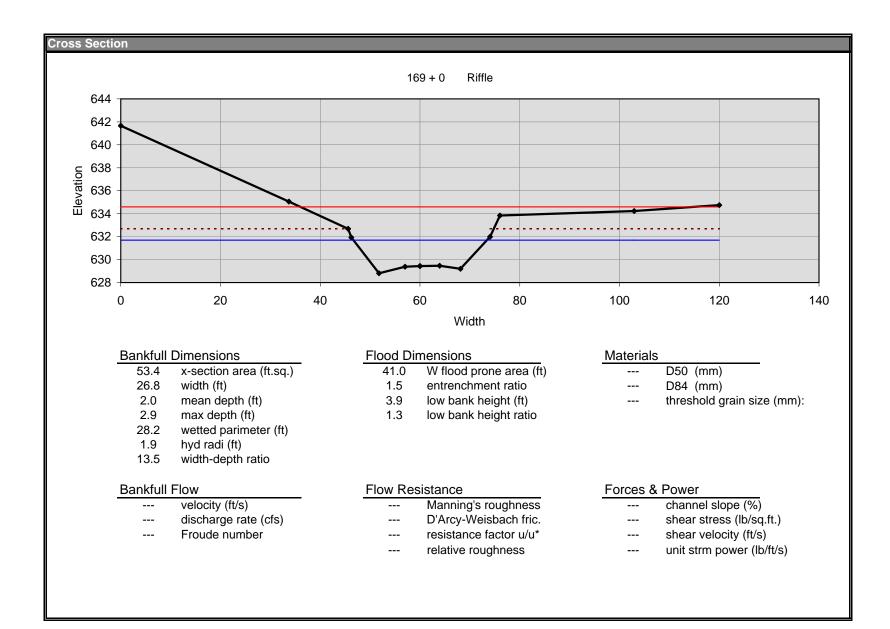

Bar Sample				_			Bar San	nple,					
material	size range	(mm)	weight	II			Buckhor	rn - Sub-Pav	/ement				
silt/clay	0	0.062		##			Holly Gr	rove Site					
very fine sand	0.062	0.13		##									
fine sand	0.13	0.25		##		No	te: Largest	t Particles:	34mm & 28	mm			
medium sand	0.25	0.5		##									
coarse sand	0.5	1		##				Bar Sample	, Buckhorn -	Sub-Pavemer	nt		
very coarse sand	1	2		##	100% -					,		 10	60
very fine gravel	2	4	139	##	90% -						1 I I I I I I I I I I I I I I I I I I I	· · · · · · · · · · · · · · · · · · ·	10
fine gravel	4	6	110	##	80% -			1 1 1 1 1 1 1 1 1					40
fine gravel	6	8		##		i i						+ + 1:	20 _
medium gravel	8	11	85	##	- 70% - - 60% - - 50% - - 40% - - 30% -								00 number
medium gravel	11	16		##	÷ 60% -								00 De
coarse gravel	16	22	121	##	iji 50% -					1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		
coarse gravel	22	32		##	int 10%				/				pa
very coarse gravel	32	45		##	Jeg 40% -							60	o T i
very coarse gravel	45	64		##	පී 30% -				─ <u>┼</u> ┩╹┼ <u>┼┼┼</u> ──				les
small cobble	64	90		##	20% -				_/			+ + + + + + + + + + + + + + + + + + + +	0
medium cobble	90	128		##	10% -							20	0
large cobble	128	180		##									
very large cobble		256		##	0% -								
small boulder	256	362		##	0.	01	0.1	1	10	100	1000	10000	
small boulder	362	512		##					particle size				
medium boulder	512	1024		##							- cumulative %	# of p	articles
large boulder		2048		##									
very large boulder	2048	4096		##		size p	percent less	s than (mm)			particles	size distrib	ution
	Total Par	ticle Count:	455		D16	D35	D50	D65	D84	D95	gradation ge		std dev
					2.875	4.31	5.5	10	18	21	2.6	7.2	2.5

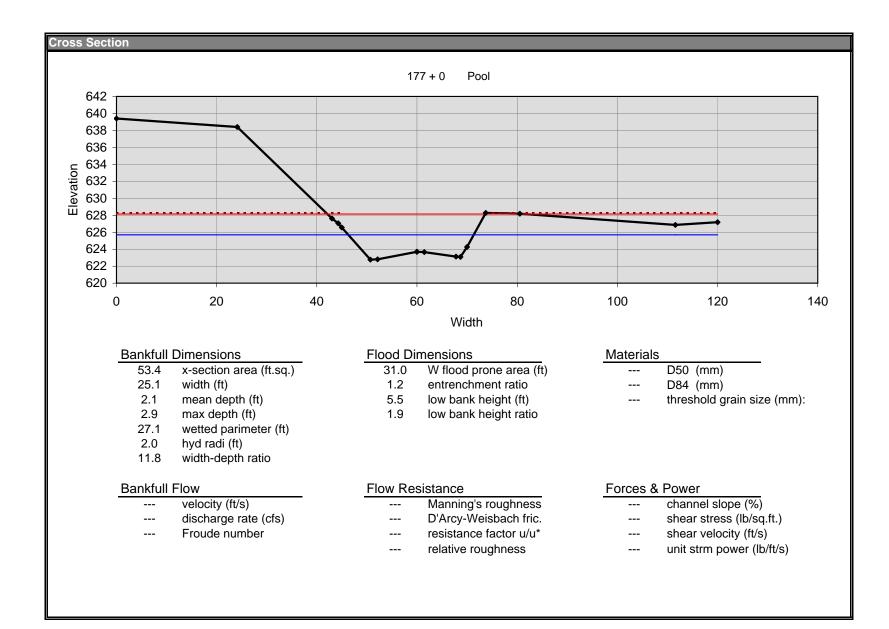


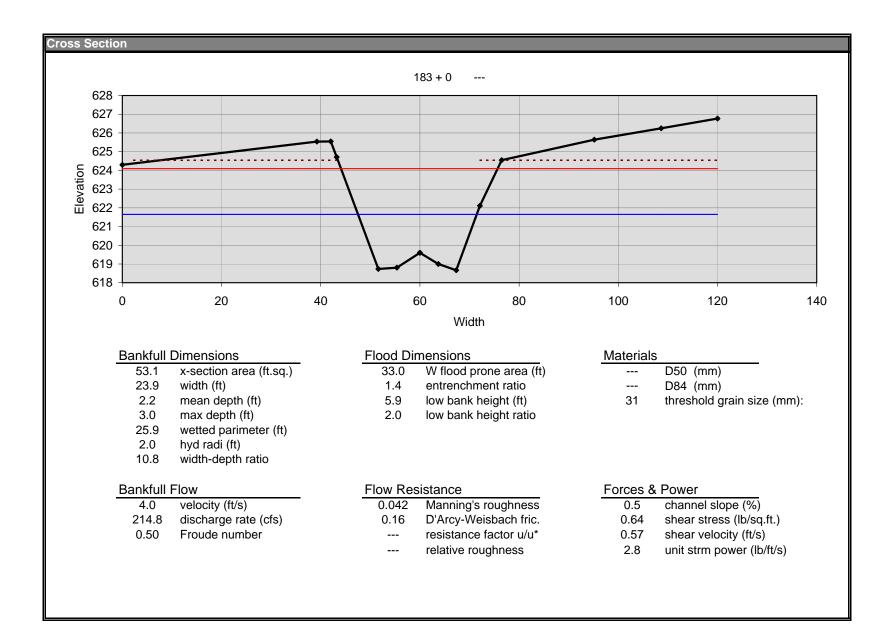


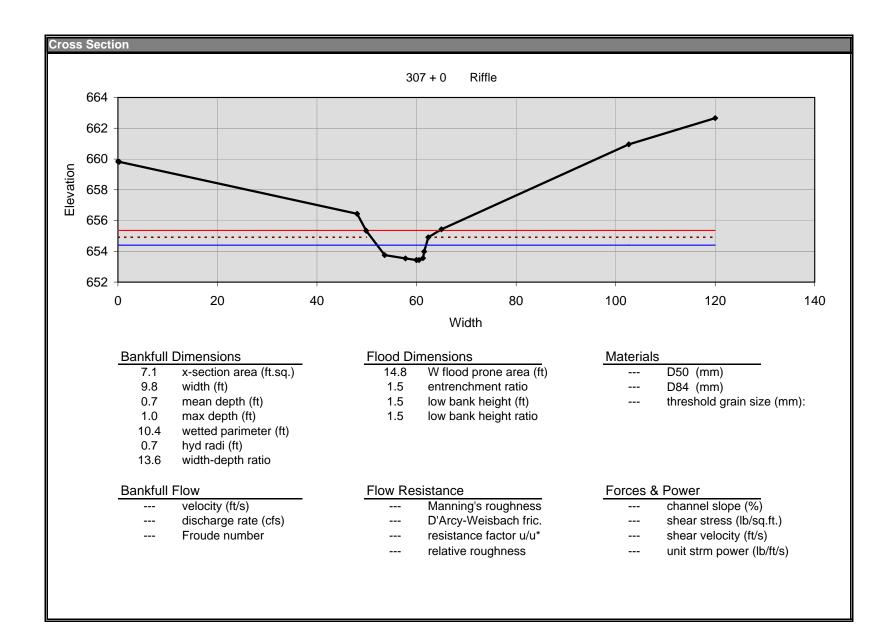


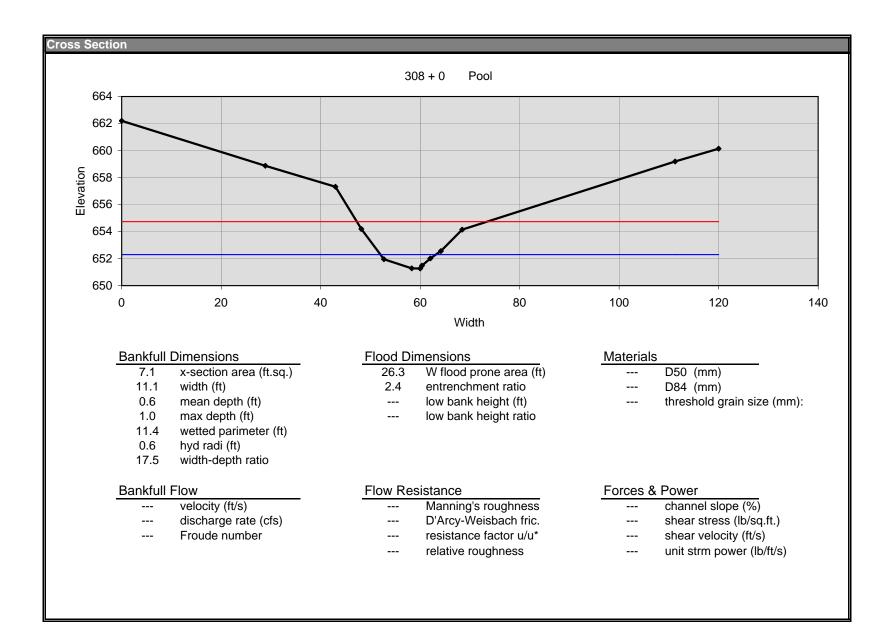


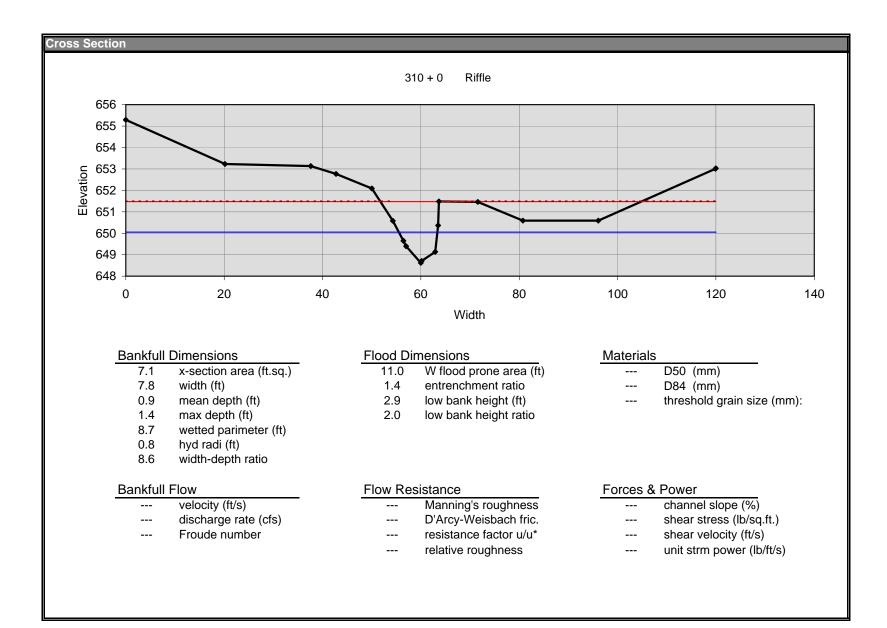




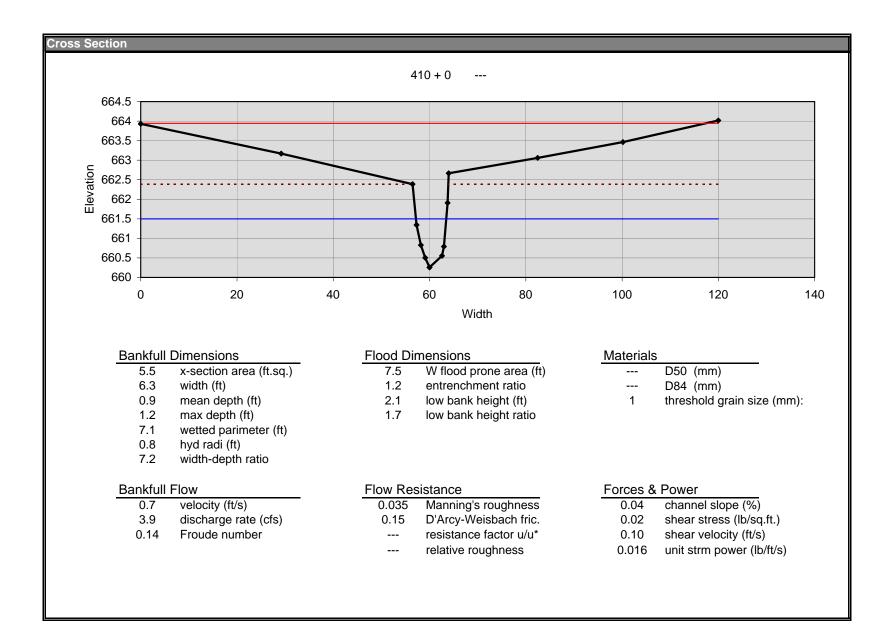


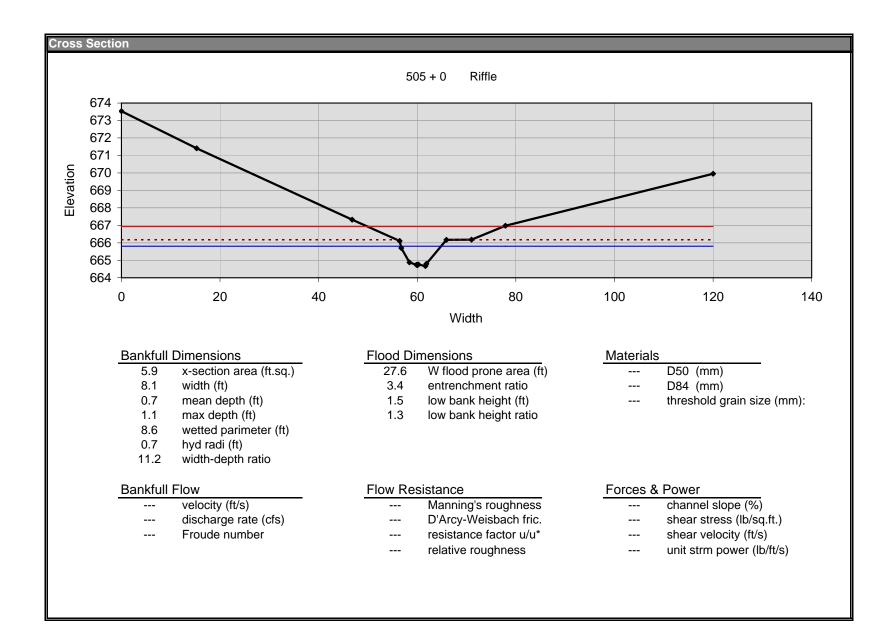


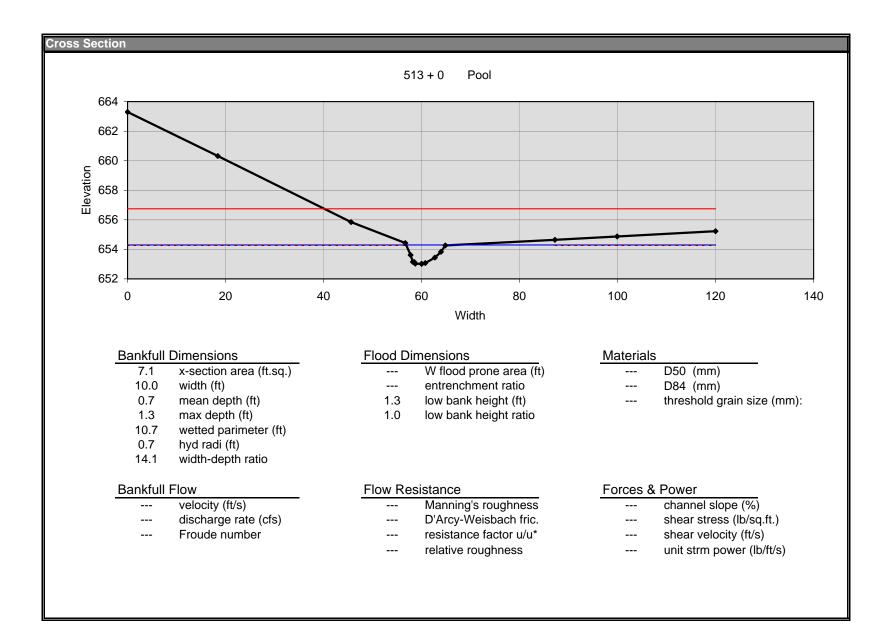


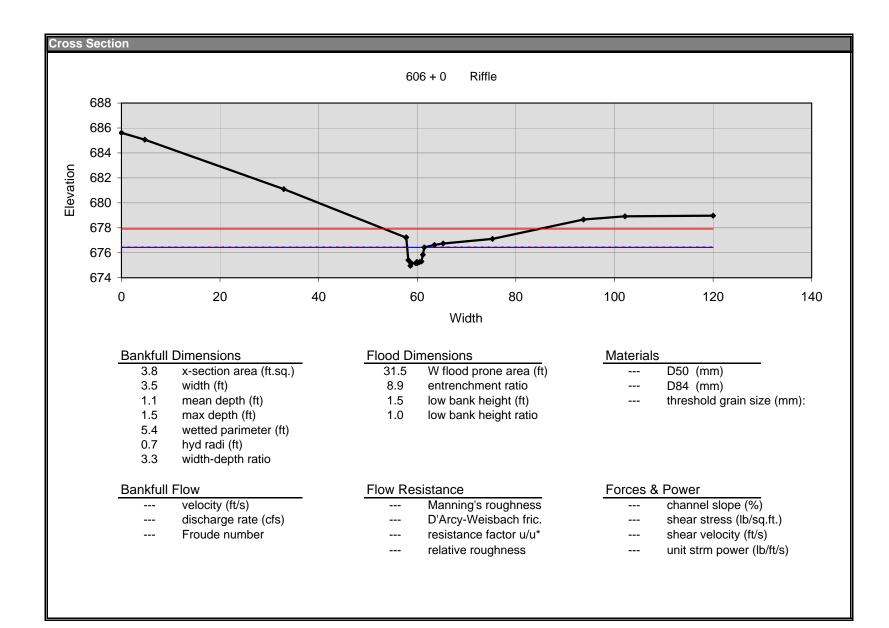


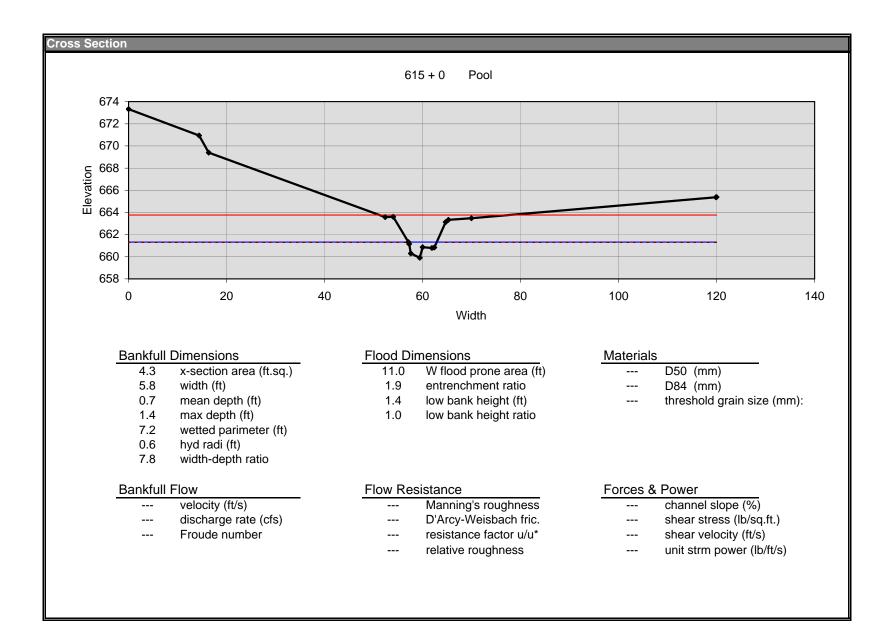


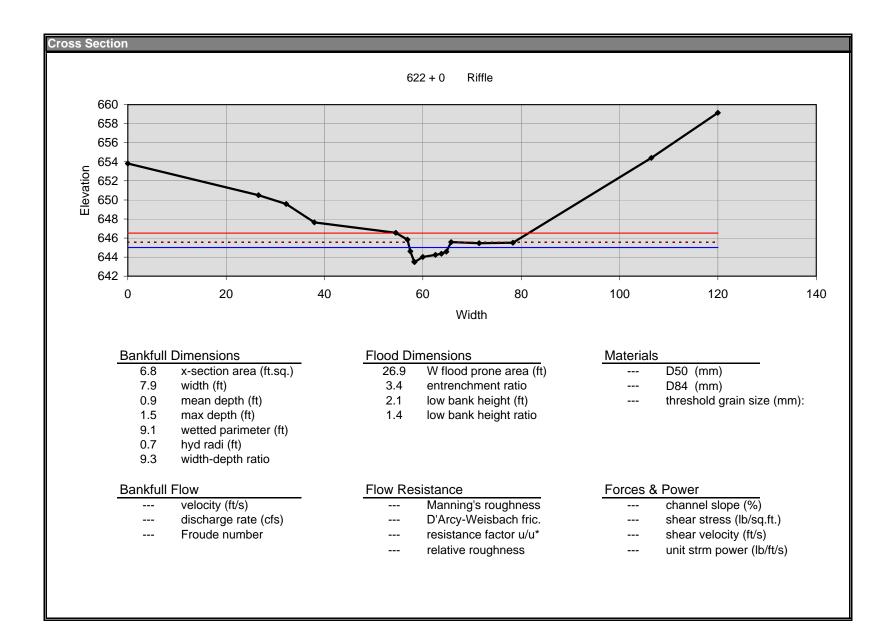


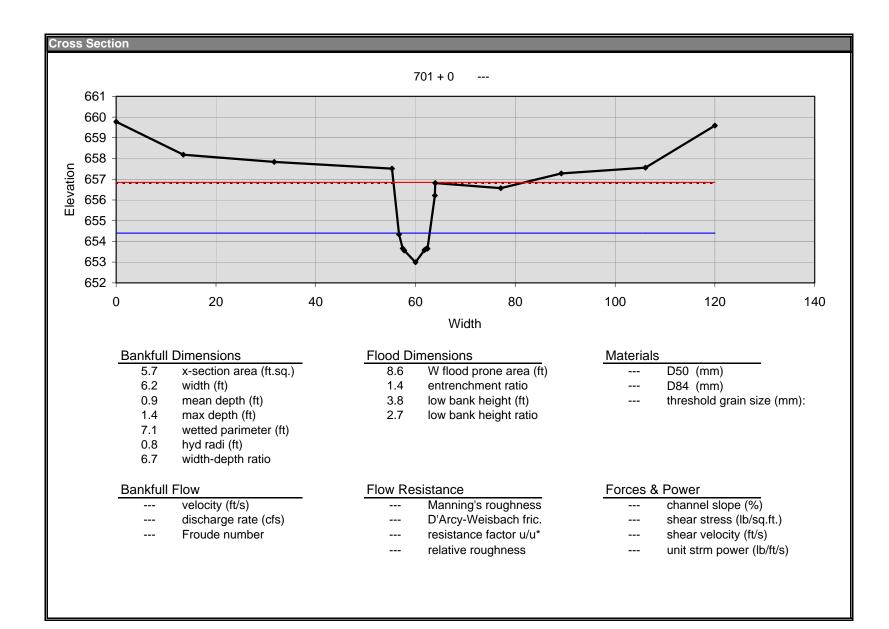


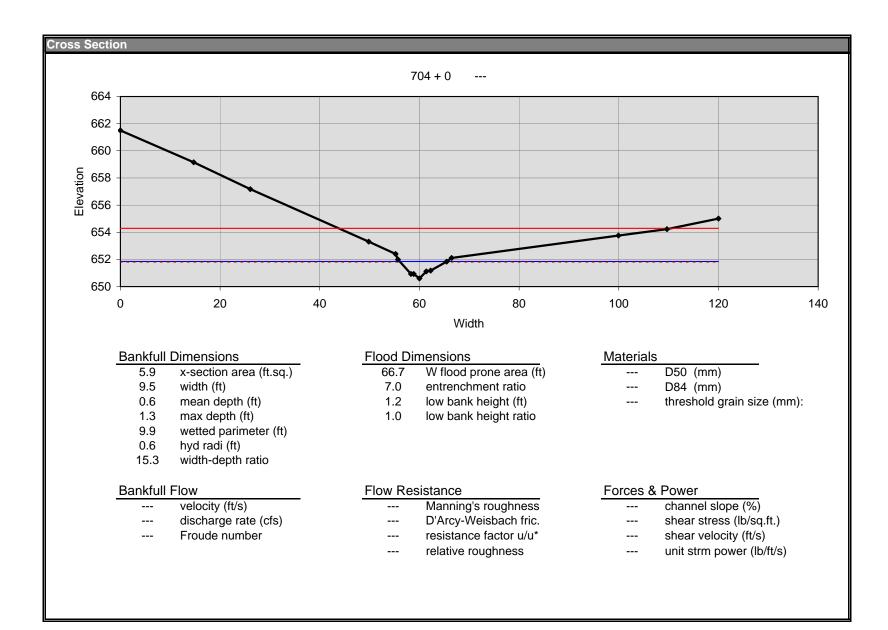


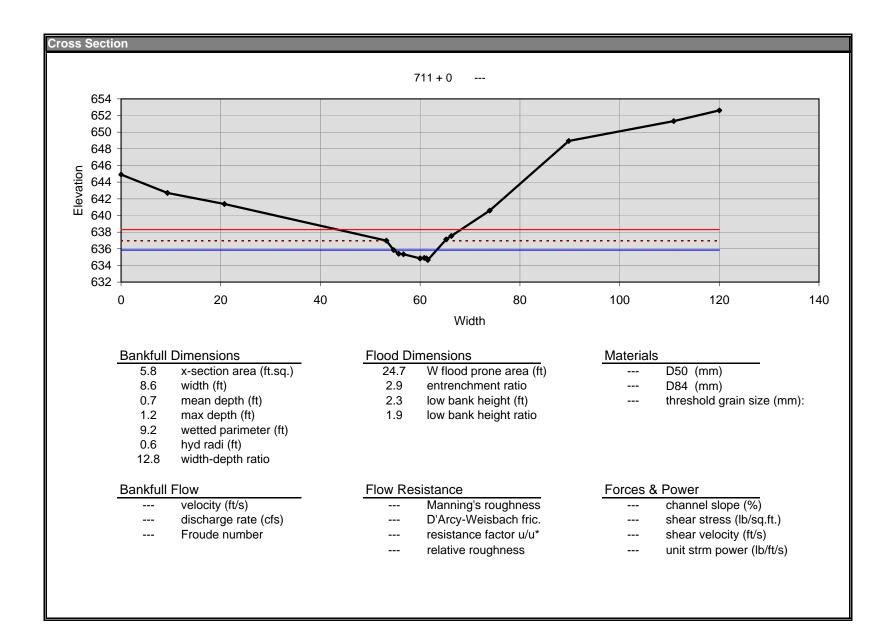












Appendix C. SITE NCDWQ Stream Classification Forms

NCDWQ Stream Classification Form

Project Name Holly Grove	River Basin Lape Foar County Guilford	Evaluation	Wi-L
DWQ Project Number	Nearest Named Stream: Reedy Fork Latitude:	Signature:	W Grant Jeb

Date 12/28/04 USGS QUAD: OSSIPEC Location Directions; Longmide: *PLEASE NOTE: If evaluator and landowner agree that the feature is a man-made ditch, then use of this form is not necessary. Also, if in the best professional judgement of the evaluator, the feature is a man-made ditch and not a modified natural stream-this rating system should not be used*

Primary Field Indicators: Circle One Number Per Line

I. Geomorphology	Absent	Weak	Moderate	Strong	······································
1) Is There A Riffle-Pool Sequence?	0	1	2	Ø	
2) Is The USDA Texture In Streambed			-		
Different From Surrounding Terrain?	0	1	Q	3	
3) Are Natural Levees Present?	0	02	2	3	
4) Is The Channel Sinuous?	0	0	2	3	
5) Is There An Active (Or Relic)			-		
Floodplain Present?	0	1	0	3	
5) Is The Channel Braided?	O	1	2	3	
7) Are Recent Alluvial Deposits Present?	0	Ø.	2	3	
8) Is There A Bankfull Bench Present?	0	D	2	3	
9) Is A Continuous Bed & Bank Present?	0	1	(2)	3	
*NOTE: If Bed & Bank Caused By Ditching And WITHO 10) Is A 2 rd Order Or Greater Channel (As Indi	UT Sinuesity Then S cated	onre (1+)			
On Topo Map And/Or In Field) Present?	(Yes=3	2	No 0		
PRIMARY GEOMORPHOLOGY INDIC.	ATOR POINT.	S: 16			
II. Hydrology	Absent	Weak	Moderate	Strong	
1) Is There A Groundwater		(m)	2		

Flow/Discharge Present? PRIMARY HYDROLOGY INDICATOR POINTS:

III. Biology	Absent	Weak	Moderate	Strong	
1) Are Fibrous Roots Present In Streambed?	ξ	0	1	0	
2) Are Rooted Plants Present In Streambed?	(I)	2	1	11	
3) Is Periphyton Present?	Q	1	2	3	
4) Are Bivalves Present?	02	1	2	· · · · · ·	
PDIMARY PLOTOCY INDICATOR POL	TS. 5				

PRIMARY BIOLOGY INDIC

Secondary Field Indicators: iCircle Cine Number Per video

I. Geomorphology	Absent	Weak	Moderate	Strong	
1) Is There A Head Cut Present In Channel?	()	3	1	1.5	
2) Is There A Grade Control Pount In Channel?	. 0			1.5	
3) Does Topography Indicate A Natural Drainage Way?	0	.5	. O	1.5	
SECONDARY GEOMORPHOLOGY IND.	CATOR POIN	TS: 2.			

H. Hydrology	Absent	Weak	Moderate	Strong	
 Is This Year's (Or Last's) Leaflitter Present in Streambed? 	0	1	.5	(1	
2) Is Sedment On Plants (Or Debris) Present?	0	(F)	1	1.5	
3) Are Wrack Lines Present?	(<u>)</u>	3		15	
4) Is Water In Channel And >48 Hrs. Since	0	5	0	1.5	
Last Known Rain? (*NOTE // Duch Indicated in #9 4b	ner Skip This Stop 4	nd #5 Below*)			
5) Is There Water In Channel During Dry	0	5	1	1.5	
Conditions Or In Growing Season)?			· · · · · · · · · · · · · · · · · · ·		
6) Are Hydric Soils Present In Sides Of Channel SECONDARY HYDROLOGY INDICATO		? Tex 1.5) No-0		

SECONDARY HYDROLOGY INDICATOR POI

III. Biology	Absent	Weak	Moderate	Strong	
1) Arc Fish Present?		.5	1	1.5	
2) Arc Amphibians Present?	0	Q	1	1.5	
3) Arc AquaticTurtles Present?		.5	Ĩ		
4) Are Crayfish Present?	0		I	5	
5) Are Macrobenthos Present?	0	0		1.5	
6) Are fron Osidizing Bacteria/Fungus Present?	0	5	1	1.5	
7) Is Filamentous Algae Present?	0	5	1	1.5	
8) Are Wetland Plants In Streambed?	SAV Mostly OB	L Mostly FACY	W Mostly FAC	Mostly FACE	Mostly LPL
(* NOTE: If Total Absence of All Plants in Streamford	2 1	.73	0	0	13

to Nated Above Ship This Step LNLESS SAT Pressure)

Johal 31

NCDWQ Stream Classification Form

Project Name: Holly Grove	River Basin: Cape Fear	County: Galford	Evaluator: USGL
DWQ Project Number:	Nearest Named Stream: Reedy Fork	Latitude:	signature: W Grant &S
Date: 12/28/04	USGS QUAD: OBSIDE	Longitude:	Location/Directions:

Date: 12/28/04 USGS QUAD: OSSIFEE *PLEASE NOTE: If evaluator and handowner agree that the feature is a man-made ditch, then use of this form is not necessary. Also, if in the best professional judgement of the evaluator, the feature is a man-made ditch and not a modified natural stream—this

rating system should not be used*

Primary Field Indicators: (Circle One Number Per Line)

I. Communitations	Absent	Weak	Moderate	Strong	
I. Geomorphology	0	(T)	2	3	
) Is There A Riffle-Pool Sequence?	0				
) Is The USDA Texture In Streambed			(2)	3	
Different From Surrounding Terrain?	0	i	higher		
) Are Natural Levees Present?	0	D	1		
1) Is The Channel Sinuous?	0	1	0	ś	
) Is There An Active (Or Relic)			3	2	
loodplain Present?	0	1		3	
i) Is The Channel Braided?	0	1			
1) Are Recent Alluvial Deposits Present?	0	2	2	2	
B) Is There A Bankfull Bench Present?	0	0	2	2	
Via A Continuous Dad & Bonk Present?	0	(D)	2	3	
NOTE If Red & Bank Caused By Ditching And WITH	OUT Singustive Then S	imre ())	-		
10) Is A 2 nd Order Or Greater Channel (As In-	licated (Yes-3	E CE	$N_{\theta} = 0$		and the second second
On Topo Map And/Or In Field) Present?	1000 -	finner	- Zoolin - Ver		

PRIMARY GEOMORPHOLOGY INDICATOR POINTS: 16

II. Hydrology	Absent	Weak	Moderate	Strong	-
1) Is There A Groundwater Flow/Discharge Present?	0	1	2	3	
PRIMARY HYDROLOGY INDICATO	OR POINTS:	3			

111 0.1	Absent	Weak	Moderate	Strong
III. Biology	In		1	0
1) Are Fibrous Roots Present In Streambed?	50	4	(T)	n.
2) Are Rooted Plants Present In Streambed?	3			2
3) Is Periphyton Present?	Ð		4	1
4) Are Bivalves Present?	(2)	I	4	2

Secondary Field Indicators: Acteele One Number Per Liner

L Carmonholom	Absent	Weak	Moderate	Strong	
I. Geomorphology	Q	5	1	1.5	
1) Is There A Head Cut Present In Channel ³ 2) Is There A Grade Control Point In Channel ³	ð -	.5	1	1.5	
 Does Topography Indicate A Natural Drainage Way? 	0	5	1	I)	

SECONDARY GEOMORPHOLOGY INDICATOR POINTS: 1.5

II. Ilydrology	Absent	Weak	Moderate	Strong	and the second second
1) Is This Year's (Or Last's) Leaflitter	(3)	1	*	Ü	
Present In Streambed?	- Neile	2	(1)	1.5	
2) Is Sediment On Plants (Or Debris) Present?	0		(7)	1.5	
3) Are Wrack Lines Present?	0			1.5	
4) Is Water In Channel And >48 Hrs. Since	0	.5	(L)	- Series	
Last Known Rain? (*NOTE If Duch Indicated In #9 4b	one Skip This Step 4	nd #5 Belen *1		1.6	
5) Is There Water In Channel During Dry	0	.5	1	4.2	
Conditions Or In Growing Season)? 6) Are Hydric Soils Present In Sides Of Channel	(Or In Headcut	e Yes 15	No=0		

6) Are Hydrie Soils Present In Sides Of Channel (Or In Headcut)? SECONDARY HYDROLOGY INDICATOR POINTS:

III Dislam	Absent	Weak	Moderate	Strong	
III. Biology	(7)	5	1	1.5	
1) Are Fish Present?	C.	(3)	1	1.5	
) Are Amphibians Present?	U	2	1	1.5	
) Are AquaticTurtles Present?		(F)	1	1.5	
) Are Crayfish Present?	()		1	1 4	
) Are Macrobenthos Present?	0			15	ENANTINA CONTRACTOR
) Are Iron Oxidizing Bacteria Fungus Present"	0	2	1	15	
) Is Filamentous Algae Present?	(0)	1	CW Mostly FAC	Mostly FACI	Mostly UPL
1) Are Wetland Plants In Streambed? S	AV Mostly	OBL Mostly EA	CW MOSULTAG	in the second second	11
and the same state of the set of Disaste by Strongebergi	2	12		4, 2	

1 * NOTE: It Total Absence Of All Plants in Streambed 44 Noted Above Seig This Step UNLESS 845' Present*).

Tota 32.25

Appendix D. Reference Reach Photographs

Fork Creek: Riffle

Fork Creek: Pool

Fork Creek: Riffle

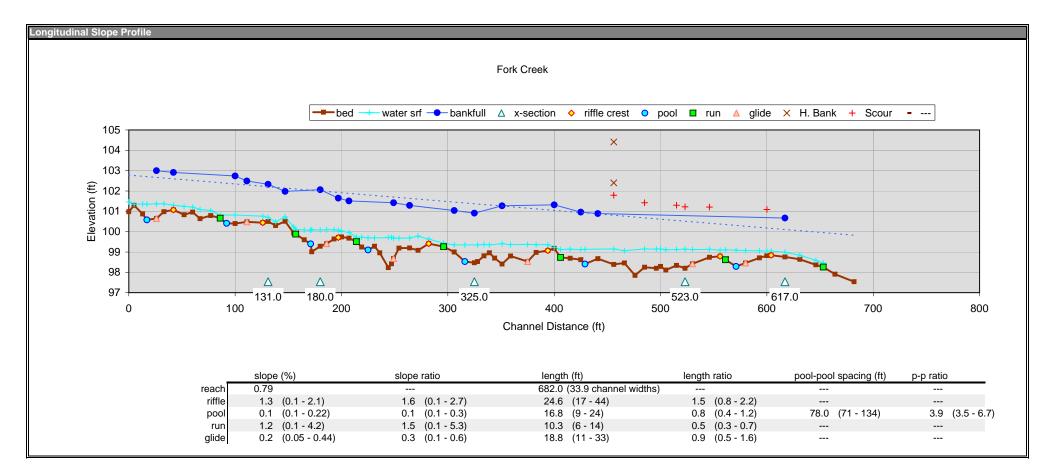
Fork Creek: Pool

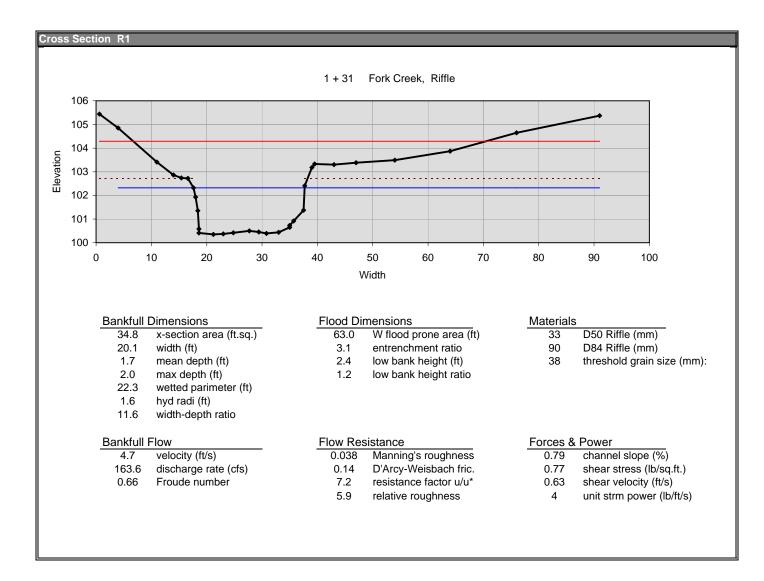
Fork Creek: Riffle

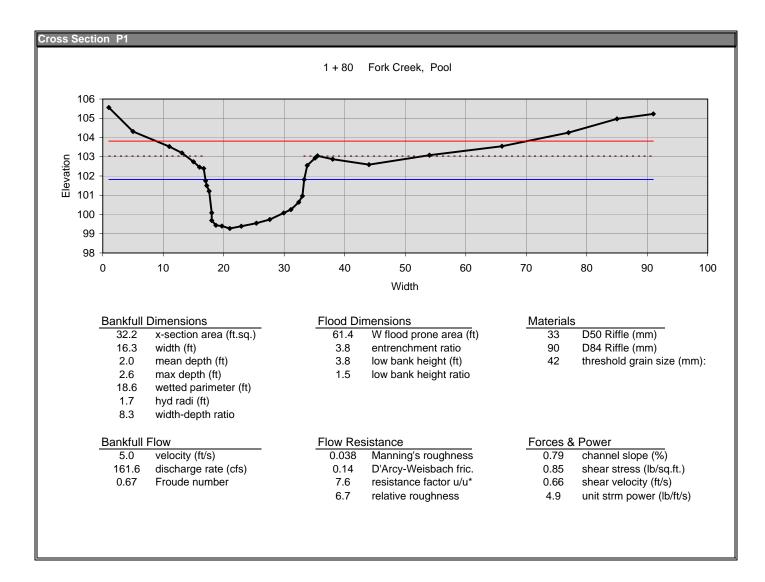
Fork Creek: Pool

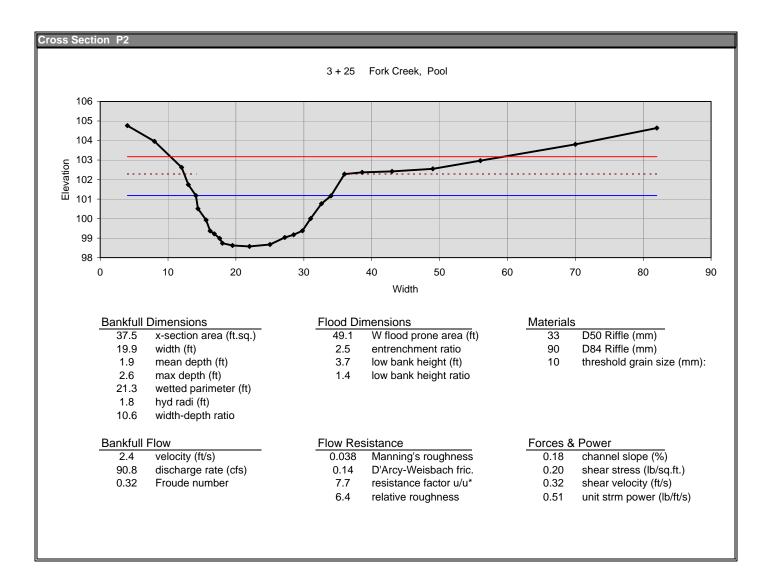
UT to Polecat Creek

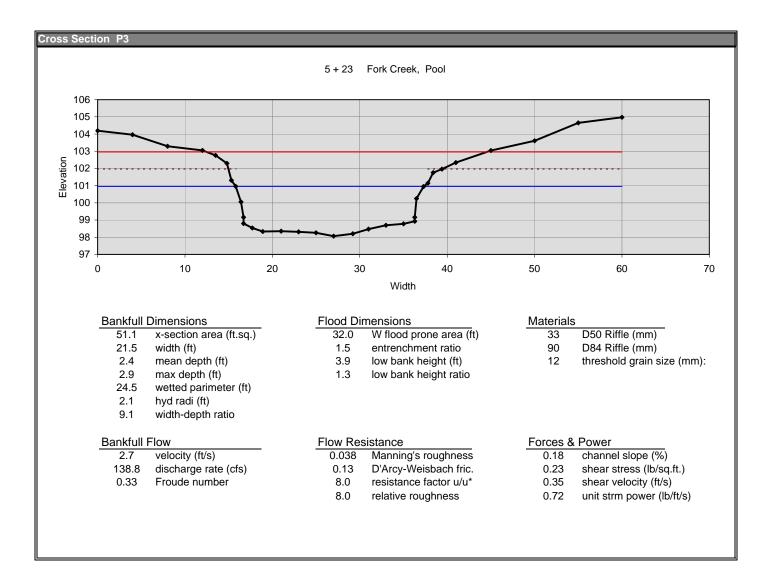
UT to Polecat Creek

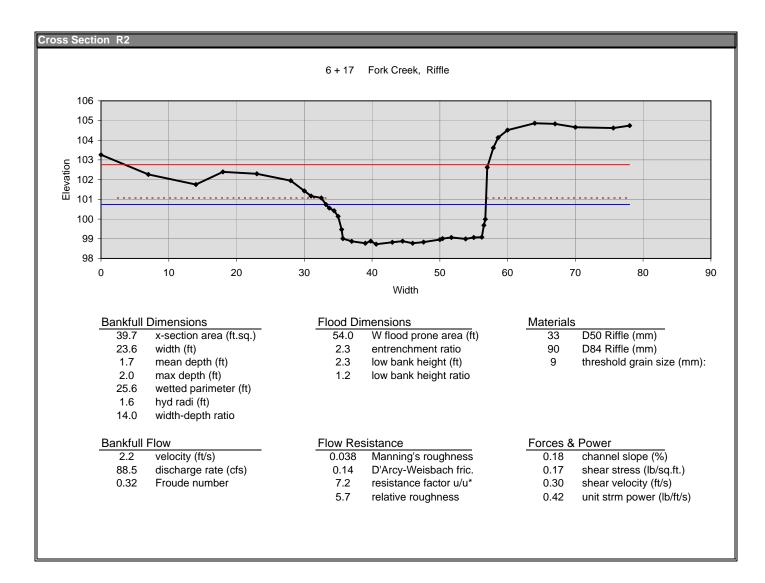

UT to Polecat Creek

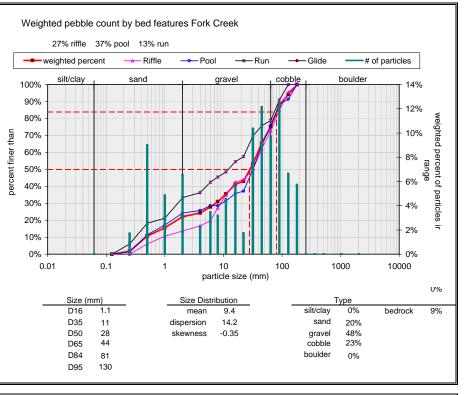


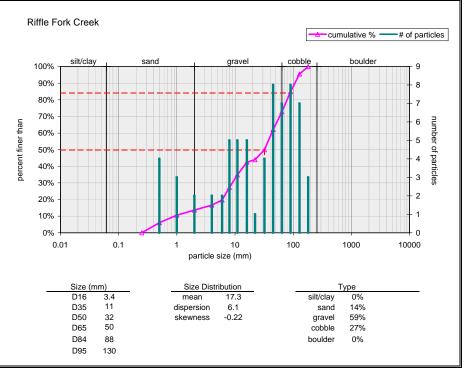

UT to Polecat Creek


Appendix E. Reference Reach Data

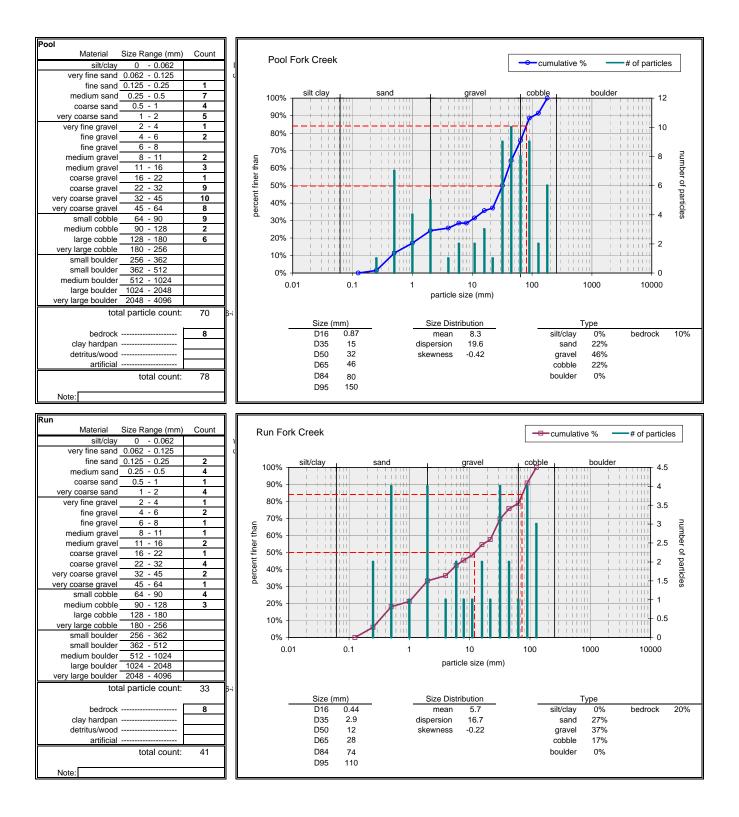

Summary										
Summary										
	Stream: Fork Creek					Pattern				
	Watershed: Cape Fear						typical	min	max	
	Location: South of As	sheboro				meander length (ft)	148.0	37.0	172.0	
						belt width (ft)	33.0	33.0	40.0	
						amplitude (ft)				
	Latitude: 35.57167					radius (ft)	107.0	47.0	318.0	
	Longitude: 79.74500					arc angle (degrees)				
	State: NC					stream length (ft)	682.0			
	County: Randolph Date: March 2, 2	006				valley length (ft)	650.0 1.0			
	Observers: SGG, EA, I					Sinuosity Meander Length Ratio	7.4	1.8	8.6	
	Observers. 300, LA, I	DAIVI, AIVII I				Meander Length Ratio	1.6	1.6	2.0	
						Radius Ratio	5.3	2.3	15.8	
						Profile	0.0	2.0	10.0	
	Channel type: B4c					1101110	typical	min	max	
	je area (sq.mi.): 2.2					pool-pool spacing (ft)	78.0	71.0	134.0	
	notes:					riffle length (ft)	30.7	17.0	44.0	
						pool length (ft)	16.8	9.0	24.0	
						run length (ft)	10.3	6.0	14.0	
						glide length (ft)	18.8	11.0	33.0	
						channel slope (%)	0.79			
						riffle slope (%)	1.3	0.1	2.1	
Dimension	•		ankfull chanr			pool slope (%)	0.1	0.1	0.22	
		typical	min	max		run slope (%)	1.2	0.1	4.2	
floodplain:	width flood prone area (ft) 63.0	54.0	63.0		glide slope (%)	0.2	0.05	0.44	
-	low bank height (ft	2.4	2.3	2.4		measured valley slope (%)				
riffle-run:	x-area bankfull (sq.ft.		34.8	39.7		ley slope from sinuosity (%)	0.8			
	width bankfull (ft)) 20.1	20.1	23.6		Riffle Length Ratio	1.5	0.8	2.2	
	mean depth (ft)) 1.73	1.7	1.7		Pool Length Ratio	0.8	0.4	1.2	
	max depth (ft		2.0	2.0		Run Length Ratio	0.5	0.3	0.7	
	hydraulic radius (ft					Glide Length Ratio	0.9	0.5	1.6	
pool:	x-area pool (sq.ft.)		32.2	51.1		Riffle Slope Ratio	1.6	0.1	2.7	
	width pool (ft		16.3	21.5		Pool Slope Ratio	0.1	0.1	0.3	
	max depth pool (ft		2.6	2.9		Run Slope Ratio	1.5	0.1	5.3	
	hydraulic radius (ft					Glide Slope Ratio	0.3	0.1	0.6	
dimensionles		typical	min	max		Pool Spacing Ratio		3.5	6.7	
	width depth ratio		11.6	14.0		Channel Materials	Riffle			BkF
	entrenchment ratio		2.7	3.1			Surface			Channel
	riffle max depth ratio		1.1	1.2		D16 (mm)	6.4			1.1
	bank height ratio		1.2	1.2		D35 (mm)	15			11
	pool area ratio		0.9	1.5		D50 (mm)	33			28
	pool width ratio		0.8	1.1		D65 (mm)	52			44
	pool max depth ratio		1.5	1.7		D84 (mm)	90			81
hydraulics:		typical	min	max		D95 (mm)	160			130
	discharge rate (cfs)		88.5	163.6		mean (mm)	24.0			9.4
	channel slope (%)				t	dispersion	3.9			14.2
		riffle-run	min	max	pool	skewness Shana Fastar	-0.1			-0.3
	velocity (ft/s)		2.2	4.7	4.3	Shape Factor				
	Froude number		0.32	0.66	0.31	% Silt/Clay				000/
	shear stress (lbs/sq.ft.)		0.174	0.771	0.937 0.695	% Sand	9% 64%			20%
	shear velocity (ft/s		0.300	0.631	0.095	% Gravel	64% 26%			48%
	stream power (lb/s		43.6	80.6		% Cobble	20%			23%
	unit stream power (lb/ft/s) relative roughness		0.421	4.015		% Boulder % Bedrock				9%
	friction factor u/u		7.2	7.2						3%
	ld grain size (t*=0.06) (mm)		7.2 8.6	7.2 37.9		% Clay Hardpan % Detritus/Wood				
	Shield's parameter		0.0	51.9		% Detritus/wood % Artificial				
	Shield's parameter	0.070				Largest Mobile (mm)				
						Largest woble (mm)				



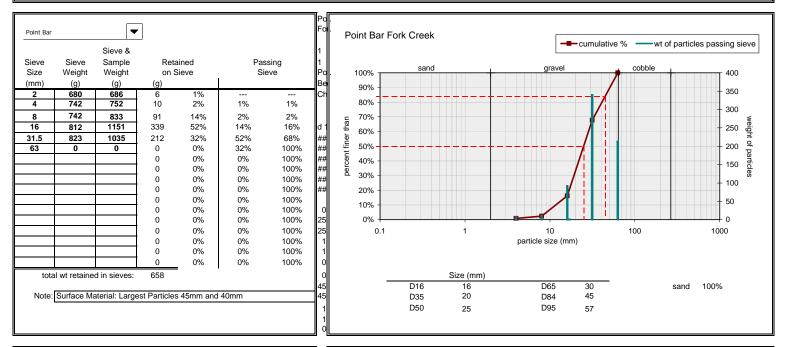

1) Individual Pebble Count

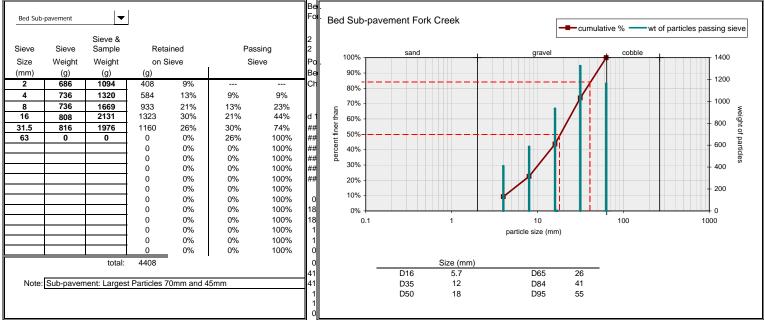

Two individual samples may be entered below. Select sample type for each.

very fine sand 0.062 0.125 2 fine sand 0.125 0.25 2 medium sand 0.25 0.5 1 coarse sand 0.5 1 6 very fine gravel 2 4 4 fine gravel 4 6	of particles
Material Size Range (mm) Count slit/clay 0 -0.062 1 very fine sand 0.062 -0.125 fine sand 0.125 -0.25 medium sand 0.5 -1 coarse sand 0.5 -1 very fine gravel 2 -4 very fine gravel 2 -4 wery fine gravel 4 -6	of particles
Indextal Olds Olds Image: mail of the second se	of particles
very fine sand 0.062 - 0.125 2 fine sand 0.125 - 0.25 2 medium sand 0.25 - 0.5 1 coarse sand 0.5 - 1 6 very fine gravel 2 - 4 4 fine gravel 4 - 6 80%	of particles
fine sand 0.125 0.25 2 medium sand 0.25 0.5 1 coarse sand 0.5 1 6 very coarse sand 1 2 80% fine gravel 2 4 6	
medium sand 0.25 - 0.5 1 coarse sand 0.5 - 1 6 very coarse sand 1 - 2 very fine gravel 2 - 4 4 - 6	
medium sand 0.25 - 0.5 1 coarse sand 0.5 - 1 6 very coarse sand 1 - 2 very fine gravel 2 - 4 4 - 6	
coarse sand 0.5 - 1 6 very coarse sand 1 - 2 90% very fine gravel 2 - 4 4 fine gravel 4 - 6 3	- 18
very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6	10
Very fine gravel 2 - 4 4 3 fine gravel 4 - 6 3 80% 4	- 16
fine gravel 4 - 6	10
fine gravel 4 - 6	- 14
	14
fine gravel 6 - 8 9 medium gravel 8 - 11 7 medium gravel 11 - 16 6 coarse gravel 16 - 22 6 coarse gravel 22 - 32 7 very coarse gravel 32 - 45 9	- 12 2
medium gravel 8 - 11 7	12 5
medium gravel 11 - 16 6 6 6 60% -	- 10 🖣
coarse gravel 16 - 22 6 50%	0
coarse gravel 22 - 32 7 9 00/0	-8 ba
very coarse gravel 32 - 45 9 & 40%	- 12 number of particles - 8 - 6
very coarse gravel 45 - 64 16	-6 6
small cobble 64 - 90 10 30%	o o
medium cobble 90 - 128 7	- 4
lage coble 128 - 180 7 20% -	-7
	- 2
very large cobble 180 - 256 2 10% -	-
	- 0
	•
medium boulder 512 - 1024 0.01 0.1 1 10 100 1000 100	UU
large boulder 1024 - 2048 particle size (mm)	
very large boulder 2048 - 4096	
total particle count: 100	
Size (mm) Size Distribution Type	
bedrock D16 6.4 mean 24.0 silt/clay 1%	_
detritus/wood D50 33 skewness -0.13 gravel 64%	
artificial D65 52 cobble 26%	
total count: 100 D84 90 boulder 0%	
D95 160	
Note: Riffle	
Material Size Range (mm) Count sitt/clay 0 - 0.062 Bankfull Channel Pebble Count, Fork Creek	particles
fine sand 0.125 - 0.25	
silf/clay sand dravel cobble boulder	1
	1
very coarse sand 1 - 2	0.9
	0.8
fine gravel $4 \cdot 6$ $7 \times 70\%$	0.7 2
	ĥ
	0.6 g
medium gravel 8 - 11	<u>0</u>
medium gravel 8 - 11 e 60% medium gravel 11 - 16 50% 50% -	0.5 9
medium gravel 8 - 11 60% medium gravel 11 - 16 50% coarse gravel 16 - 22 50%	0.5 of p
medium gravel 11 - 16 50% coarse gravel 16 - 22 50% coarse gravel 22 - 32 40%	0.5 of partic
very coarse gravel 32 - 45	0.5 of particle
very coarse gravel 32 - 45 very coarse gravel 45 - 64 30%	0.5 of particles 0.4 0.3
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90	0.3 8
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128	0.3 Ø
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128	0.3 8
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 10% 10%	0.3 0 0.2 0.1
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 30% very coarse gravel 45 - 64 30% small cobble 64 - 90 20% medium cobble 90 - 128 10% large cobble 128 - 180 0%	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362 small boulder 362 - 512	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 small boulder 256 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 204 - 4096	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 very large cobble 128 - 180 small boulder 256 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 Size (mm) Size Distribution Type	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 006 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 bedrock 0.01 0.1 total particle count: 0 D16 3.4 mean sand D35 12 dispersion sand	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 0 Size (mm) Size Distribution Type D16 3.4 mean D35 12 dispersion sand D50 17 skewness gravel	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 very large cobble 128 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 0 bedrock 0 clay hardpan	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 large cobble 128 - 180 very large cobble 128 - 180 very large cobble 128 - 180 very large cobble 128 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 detritus/wood - total particle count: 0 bedrock - detritus/wood - total count: 0 bedrock - - - 0.55 12 0.50 17 0.56 20 cobble 0.565 20 cobble <td>0.3 Ø 0.2 0.1 0</td>	0.3 Ø 0.2 0.1 0
very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 wery large cobble 128 - 180 wery large cobble 128 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 0 Size (mm) Size Distribution Type D16 3.4 mean silt/clay detritus/wood D50 17 skewness gravel D65 20 cobble	0.3 Ø 0.2 0.1 0

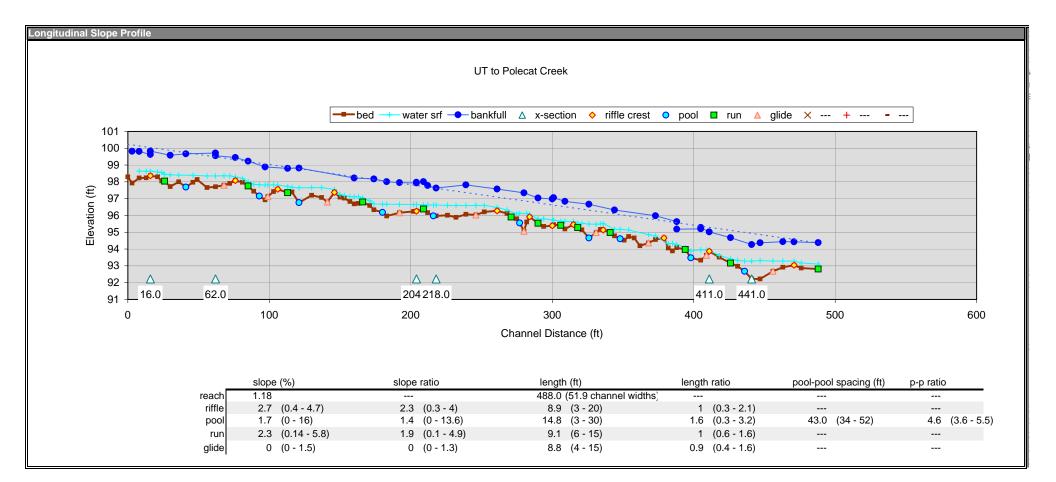

2) Weighted Pebble Count Feature Percent of Reach Riffle, Pool, Run, Glide ▼ Pool 37 %

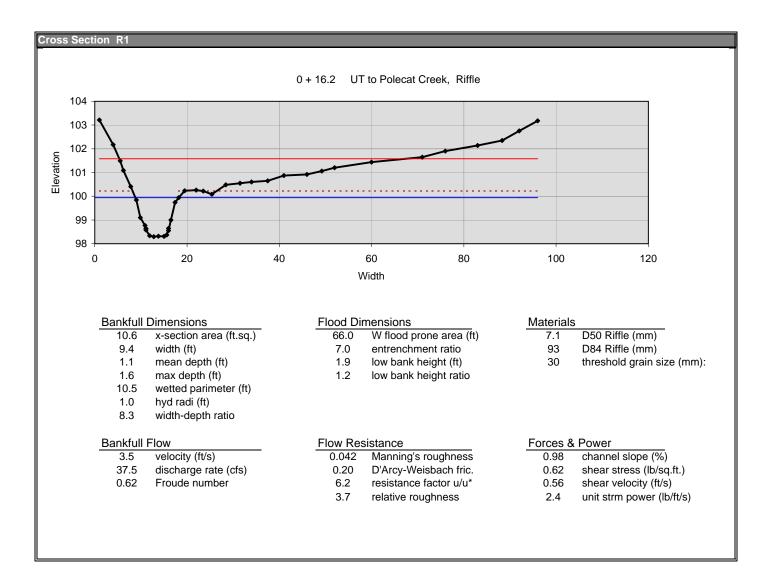
Weighted pebble cou	nt by bed features	5
Material	Size Range (mm)	weighted
silt/clay	0 - 0.062	0.0
very fine sand	0.062 - 0.125	0.0
fine sand	0.125 - 0.25	1.3
medium sand	0.25 - 0.5	6.9
coarse sand	0.5 - 1	3.7
very coarse sand	1 - 2	5.0
very fine gravel	2 - 4	1.7
fine gravel	4 - 6	2.7
fine gravel	6 - 8	2.4
medium gravel		3.5
medium gravel	11 - 16	4.4
coarse gravel	16 - 22	1.3
coarse gravel	22 - 32	8.0
very coarse gravel	32 - 45	9.3
very coarse gravel	45 - 64	7.5
small cobble	64 - 90	9.6
medium cobble	90 - 128	5.1
large cobble	128 - 180	4.4
very large cobble	180 - 256	0.0
small boulder	256 - 362	0.0
small boulder	362 - 512	0.0
medium boulder	512 - 1024	0.0
large boulder	1024 - 2048	0.0
very large boulder	2048 - 4096	0.0
total particle	weighted count:	77
		7.4
		0.0
detritus/wood		0.0
artificial		0.0
total	weighted count:	84.4
Note:		

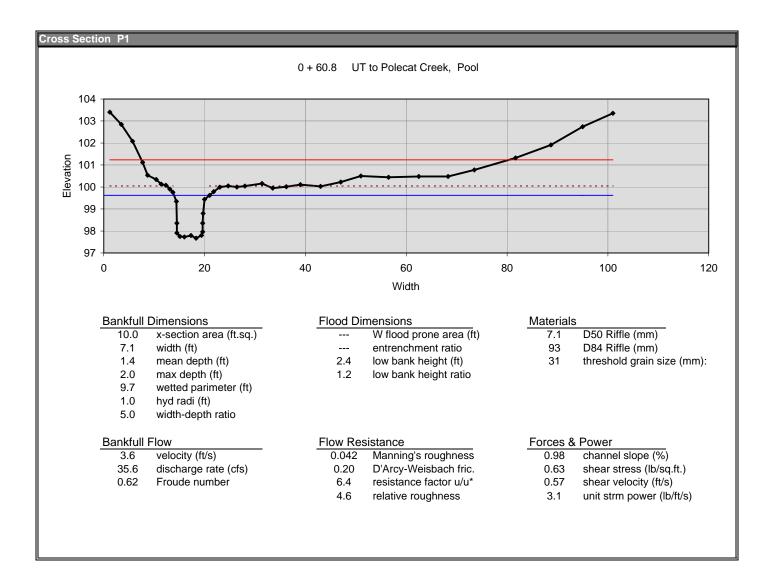


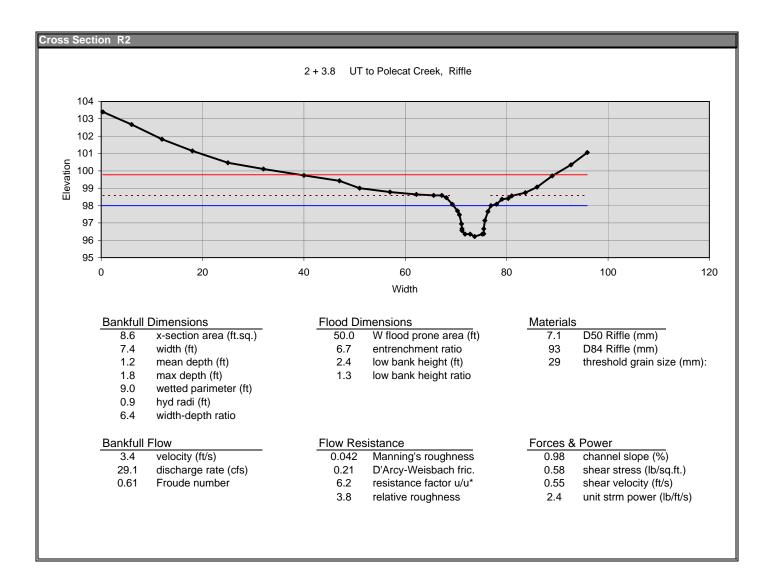

Riffle		
Material	Size Range (mm)	Count
silt/clay	0 - 0.062	
very fine sand		
	0.125 - 0.25	
medium sand		4
coarse sand		3
very coarse sand	1 - 2	2
very fine gravel	2 - 4	2
fine gravel	4 - 6	2
fine gravel	6 - 8	5
medium gravel	8 - 11	5
medium gravel	11 - 16	5
coarse gravel	16 - 22	1
coarse gravel	22 - 32	4
very coarse gravel	32 - 45	8
very coarse gravel	45 - 64	7
small cobble	64 - 90	8
medium cobble		7
large cobble	128 - 180	3
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder		
very large boulder	2048 - 4096	
tot	al particle count:	66
bedrock		
detritus/wood		
artificial		
	total count:	66
Note:		

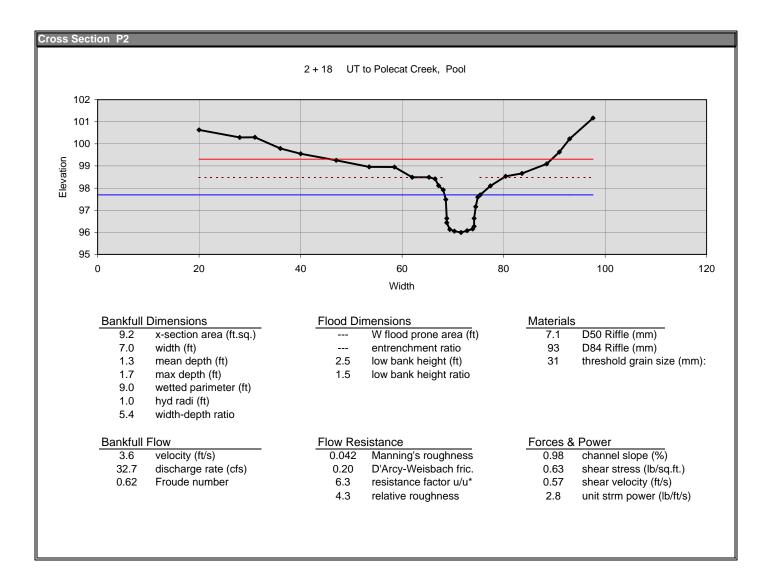
3) Bulk Sample Sieve Analysis

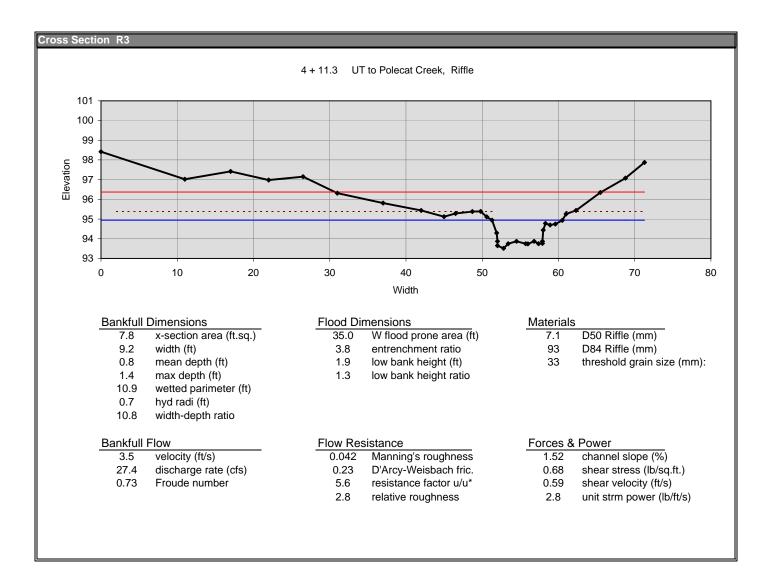

Two samples may be entered below. Select sample type for each.

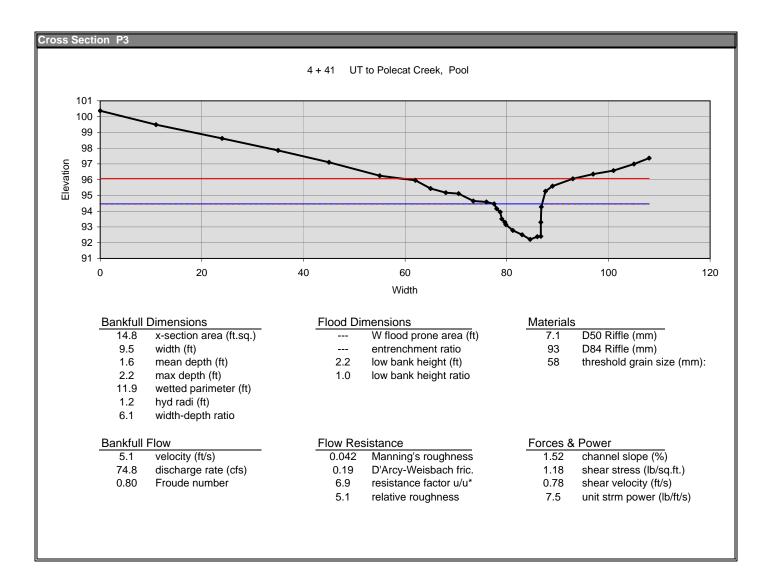


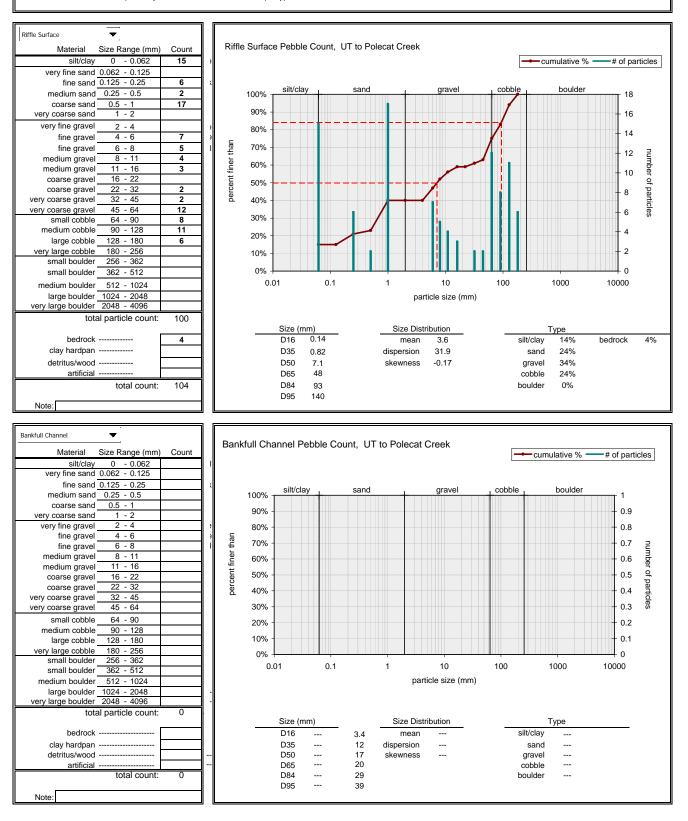


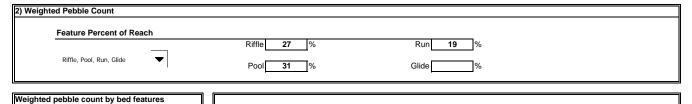

Summary					
	Stream: UT to Pole	cat Creek			
	Watershed: Cape Fear				
	Location: Fred Lineb		w Salem, No	rth East c	of Randleman
	Latituda: 25 95222				
	Latitude: 35.85333 Longitude: 79.77833				
	State: NC				
	County: Randolph				
	Date: February 2	3, 2006			
	Observers: SGG, EA, I	BAM, AMH			
	Channel type: E4				
Draina	age area (sq.mi.): 0.4				
	notes:				
Dimension		ba	nkfull chanr		
		typical	min	max	
floodplain:	width flood prone area (ft)		35.0	66.0	
riffle-run:	low bank height (ft) x-area bankfull (sq.ft.)		<u> </u>	2.4	
nine-rull.	width bankfull (sq.it.)		7.8 7.4	9.4	
	mean depth (ft)		0.8	9.4 1.2	
	max depth (ft)		1.4	1.8	
	hydraulic radius (ft)				
pool:	x-area pool (sq.ft.)	10.0	9.2	14.8	
	width pool (ft)		7.0	9.5	
	max depth pool (ft)		1.7	2.2	
dimensionless	hydraulic radius (ft) ratios:	1.0 typical	min	max	
	width depth ratio		6.4	10.8	
	entrenchment ratio		3.7	7.0	
	riffle max depth ratio	1.4	1.3	1.6	
	bank height ratio		1.2	1.5	
	pool area ratio		0.9	1.4	
	pool width ratio		0.7	1.0	
	pool max depth ratio	1.8	1.5	2.0	
avdraulice			min	may	
hydraulics:		typical	min 27 4	max 37.5	
hydraulics:	discharge rate (cfs) channel slope (%)	typical 37.4	min 27.4	max 37.5	
hydraulics:	discharge rate (cfs)	typical 37.4	27.4 min	37.5 max	pool
hydraulics:	discharge rate (cfs) channel slope (%) velocity (ft/s)	typical 37.4 1.2 riffle-run 3.5	27.4 min 3.4	37.5 max 3.5	3.7
hydraulics:	discharge rate (cfs) channel slope (%) velocity (ft/s) Froude number	typical 37.4 1.2 riffle-run 3.5 0.62	27.4 min 3.4 0.61	37.5 max 3.5 0.73	3.7 0.43
hydraulics:	discharge rate (cfs) channel slope (%) velocity (ft/s) Froude number shear stress (lbs/sq.ft.)	typical 37.4 1.2 riffle-run 3.5 0.62 0.749	27.4 min 3.4 0.61 0.580	37.5 max 3.5 0.73 0.680	3.7 0.43 0.749
hydraulics:	discharge rate (cfs) channel slope (%) velocity (ft/s) Froude number shear stress (lbs/sq.ft.) shear velocity (ft/s)	typical 37.4 1.2 riffle-run 3.5 0.62 0.749 0.622	27.4 min 3.4 0.61 0.580 0.547	37.5 max 3.5 0.73 0.680 0.593	3.7 0.43
hydraulics:	discharge rate (cfs) channel slope (%) Froude number shear stress (lbs/sq.ft.) shear velocity (ft/s) stream power (lb/s)	typical 37.4 1.2 riffle-run 3.5 0.62 0.749 0.622 28.0	27.4 min 3.4 0.61 0.580 0.547 20.6	37.5 max 3.5 0.73 0.680 0.593 28.0	3.7 0.43 0.749
hydraulics:	discharge rate (cfs) channel slope (%) Froude number shear stress (lbs/sq.ft.) shear velocity (ft/s) stream power (lb/ft/s) unit stream power (lb/ft/s)	typical 37.4 1.2 riffle-run 3.5 0.62 0.749 0.622 28.0 2.979	27.4 min 3.4 0.61 0.580 0.547 20.6 2.396	37.5 max 3.5 0.73 0.680 0.593 28.0 2.825	3.7 0.43 0.749
hydraulics:	discharge rate (cfs) channel slope (%) Froude number shear stress (lbs/sq.ft.) shear velocity (ft/s) stream power (lb/fs) unit stream power (lb/fs) relative roughness	typical 37.4 1.2 riffle-run 3.5 0.62 0.749 0.622 28.0 2.979 48.4	27.4 min 3.4 0.61 0.580 0.547 20.6 2.396	37.5 max 3.5 0.73 0.680 0.593 28.0 2.825 	3.7 0.43 0.749
hydraulics:	discharge rate (cfs) channel slope (%) Froude number shear stress (lbs/sq.ft.) shear velocity (ft/s) stream power (lb/ft/s) unit stream power (lb/ft/s)	typical 37.4 1.2 riffle-run 3.5 0.62 0.749 0.622 28.0 2.979 48.4 5.7	27.4 min 3.4 0.61 0.580 0.547 20.6 2.396	37.5 max 3.5 0.73 0.680 0.593 28.0 2.825	3.7 0.43 0.749


Pattern	_	_	_	_
Fallen	typical	min	max	
meander length (ft)	62.0	56.0	85.0	
belt width (ft)	30.0	28.0	50.0	
amplitude (ft)				
radius (ft)	20.0	19.0	50.0	
arc angle (degrees)				
stream length (ft)	425.0			
valley length (ft)	305.0			
Sinuosity	1.4			
Meander Length Ratio	6.6	6.0	9.0	
Meander Width Ratio	3.2	3.0	5.3	
Radius Ratio	2.1	2.0	5.3	
Profile				
neel neel angeing (#)	typical	min	max	
pool-pool spacing (ft)	43.0	34.0	52.0	
riffle length (ft)	9.8 14.8	3.0	20.0 30.0	
pool length (ft) run length (ft)	14.8 9.1	3.0 6.0	30.0 15.0	
glide length (ft)	9.1 8.8	4.0	15.0	
channel slope (%)	1.18	4.0	15.0	
riffle slope (%)	2.7	0.4	4.7	
pool slope (%)	1.7	0.1	16	
run slope (%)	2.3	0.14	5.8	
glide slope (%)	2.0	0111	1.5	
measured valley slope (%)			1.0	
valley slope from sinuosity (%)	1.6			
Riffle Length Ratio	1	0.3	2.1	
Pool Length Ratio	1.6	0.3	3.2	
Run Length Ratio	1	0.6	1.6	
Glide Length Ratio	0.9	0.4	1.6	
Riffle Slope Ratio	2.3	0.3	4	
Pool Slope Ratio	1.4		13.6	
Run Slope Ratio	1.9	0.1	4.9	
Glide Slope Ratio			1.3	
Pool Spacing Ratio	4.6	3.6	5.5	
Channel Mater	Riffle			BkF
	Surface			Channel
D16 (mm)	0.14			0.51
D35 (mm)	0.82			6
D50 (mm)	7.1			15
D65 (mm)	48			37
D84 (mm)	93 140			91 130
D95 (mm)	3.6			6.8
mean (mm) dispersion	3.6			17.7
skewness	-0.2			-0.2
Shape Factor	-0.2			-0.2
% Silt/Clay	14%			7%
% Sand	24%			18%
% Gravel	34%			48%
% Cobble	24%			22%
% Boulder	/ 0			,0
% Bedrock	4%			5%
% Clay Hardpan				570
% Detritus/Wood				
% Artificial				
Largest Mobile (mm)				









Appendix F. Design Calculations

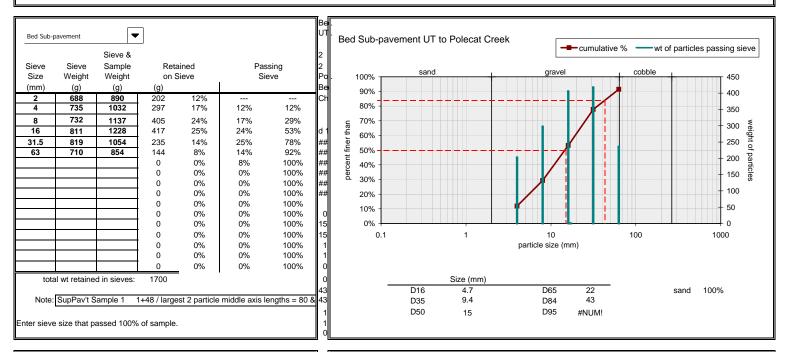
1) Individual Pebble Count

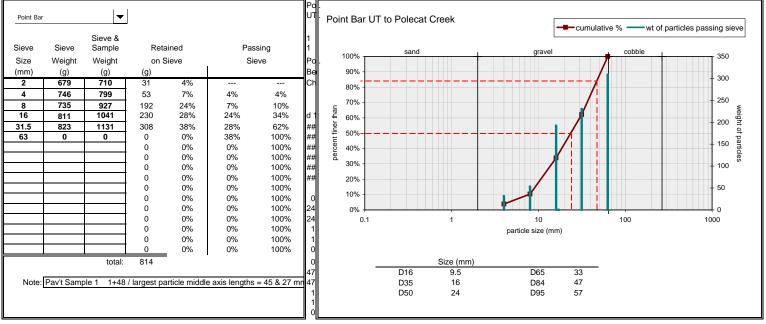
Two individual samples may be entered below. Select sample type for each.



fine sand	0.125 - 0.25	2				
medium sand	0.25 - 0.5	2			4000/	silt/clay
coarse sand	0.5 - 1	3			^{100%} T	
very coarse sand	1 - 2				90% -	
very fine gravel	2 - 4	4				
fine gravel	4 - 6	2			80% -	
fine gravel	6 - 8	2			700/	
medium gravel	8 - 11	2		Ш	70% -	
medium gravel	11 - 16	1		th	60% -	
coarse gravel	16 - 22	1		Jer		
coarse gravel	22 - 32			t fir	50%	
very coarse gravel	32 - 45	3		percent finer than	40% -	
very coarse gravel	45 - 64	2		ber		
small cobble	64 - 90	3		<u>u</u>	30% -	
medium cobble	90 - 128	5			20% -	
large cobble	128 - 180	1			20%	
very large cobble	180 - 256				10% -	
small boulder	256 - 362					
small boulder	362 - 512				0% +	
medium boulder	512 - 1024				0.0)1
large boulder	1024 - 2048					
very large boulder	2048 - 4096					
tota	al particle count:	36	6-i			
	i					Size (m
						D16
						D35
detritus/wood						D50
artificial						D65
	total count:	36	1			D84
						D95
Note:						

Riffle




weighted percent of particles ir

Material Size Range (mm) silt/clay 0 - 0.062	Count 3	Pool UT	to Polecat Creek			- c	umulative %	# of particle	es
very fine sand 0.062 - 0.125		c							
fine sand 0.125 - 0.25	2		silt clay	sand	gravel	, cobb	he ho	ulder	
medium sand 0.25 - 0.5	1	100%	Silt Clay		giavei			9	
coarse sand 0.5 - 1	1					- E E E E E E E E E E E E E E E E E E E			
very coarse sand 1 - 2	3	90%				· · · · /			
very fine gravel 2 - 4		80%							
fine gravel 4 - 6	1	00%			1 I I I I I I I I I I I I I I I I I I I	11110	1 I I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1 7	
fine gravel 6 - 8		70%							_
medium gravel 8 - 11	5					\$		+ 6	n L
medium gravel 11 - 16	2	60% 50% 40%				/			number
coarse gravel 16 - 22	5	le	1 I I I I I I I I I I I I I I I I I I I				- E - E - E - E - E - E - E - E - E - E	1 1 1 1 1 1 + 5	ę
coarse gravel 22 - 32	4	j ⊒ 50%	╶╋╾╼╴┶╸┶╴┶╵╋╵┵╎╼╸╸		╾┶╴┶┙┷┙┶┥				역
very coarse gravel 32 - 45	2	ent				f in the second second		- 4	particles
very coarse gravel 45 - 64	5	ນີ້ 40%							tic
small cobble 64 - 90	5				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	tha an i j		· · · · · · · · · · · · · · · · · · ·	es
medium cobble 90 - 128	8	30%							
large cobble 128 - 180	3	20%						- 2	
very large cobble 180 - 256	1	2070	1 I I I I I I I		1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1		
		10%						1	
small boulder 256 - 362	 								
small boulder 362 - 512		0%						0	
medium boulder 512 - 1024			0.01 0.1	1	10	100	1000	10000	
large boulder 1024 - 2048					particle size (mm)		. 500		
very large boulder 2048 - 4096				1		,			
total particle count:	51 6-	4							
			Size (mm)	Siz	ze Distribution		Туре		
bedrock	1		D16 1.3		mean 12.0		silt/clay 6%	bedrock	2%
clay hardpan			D35 16	dispe			sand 13%		-/-
detritus/wood			D50 28	skew			gravel 46%		
artificial			D65 60	0101	0.21		cobble 33%		
	50								
total count:	52		D84 110				boulder 0%)	
total oount.									
Note:			D95 150						
Note: Material Size Range (mm) silt/clay 0 - 0.062	Count 2	Run UT t				-	umulative %	# of partic	les
Note: Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125	Count 2	Run UT t	D95 150			_	-cumulative %	# of partic	les
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25	Count 2 1	1 C	D95 150	sand	gravel			der	les
Note: Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125	Count 2	Run UT t	D95 150	· · · · · · · · · · · · · · · · · · ·			e boul	der 4.5	les
Note: In Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25	Count 2 1	1 (100% -	D95 150	sand	gravel			der 4.5	les
Note: In Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5	Count 2 1	1 C	D95 150	· · · · · · · · · · · · · · · · · · ·			e boul	der 4.5	les
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2	Count 2 1 1	1 (100% -	D95 150			cobble	e boul	der 4.5	les
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 2 - 4	Count 2 1 1 4	1 (90% - 80% -	D95 150				e boul	der 4.5	les
Note: m Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6	Count 2 1 1 4	1 100% - 90% - 80% - 70% -	D95 150			cobble	e boul	der 4.5	
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8	Count 2 1 1 4 2	1 100% - 90% - 80% - 70% -	D95 150			cobble	e boul	der 4.5	
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 medium gravel 6 - 8	Count 2 1 1 4 2 2 2 2	1 100% - 90% - 80% - 70% -	D95 150				boul I	der 4.5	
Note: Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16	Count 2 1 1 2 4 2 2 2 1	1 100% - 90% - 80% - 70% -	D95 150				a boul	der 4.5	number
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.25 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22	Count 2 1 1 2 2 2 2 1 2 2 1 2	1 100% - 90% - 80% - 70% -	D95 150				boul I	der 4.5	number
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 22 - 32	Count 2 1 1 2 2 2 2 1 2 1	1 100% - 90% - 80% - 70% -	D95 150				boul I	der 4.5 4 3.5 2.5	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 22 32	Count 2 1 4 2 2 2 1 2 1 2 1 2 1 2 1 2	100% - 90% - 80% - 100% - 1000	D95 150				bould	der 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	number
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 32 - 32 very coarse gravel 32 - 45 very coarse gravel 45 - 64	Count 2 1 1 2 2 2 2 1 2 1	1 100% - 90% - 80% - 70% -	D95 150				boul I	der 4.5 4 3.5 2.5 2.5 1.5 1.5	
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90	Count 2 1 4 2 2 2 1 2 1 2 1 2 1 2 1 2	100% - 90% - 80% - tu 100% - 80% - 60% - 50% - 40% - 30% -	D95 150				bould	der 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.052 - 0.125 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 66 - 64 small cobble 64 - 90 medium cobble 90 - 128	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 100% - 1000	D95 150				boul I	der 4.5 4 3.5 2.5 2.5 1.5 1.5 1.5	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.5 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel - 64 - 90 medium cobble - 90 - 90	Count 2 1 4 2 2 2 1 2 1 2 1 2 1 2 1 2	100% - 90% - 80% - 100% - 1000	D95 150				B boul	der 4.5 4 3.5 2.5 2 1.5	number
Note: n Size Range (mm) silt/clay 0 0.062 very fine sand 0.125 0.125 fine sand 0.125 0.25 medium sand 0.25 0.5 coarse sand 0.5 1 very coarse sand 1 2 very fine gravel 2 4 fine gravel 4 6 medium gravel 8 11 medium gravel 11 16 coarse gravel 22 32 very coarse gravel 22 32 very coarse gravel 45 64 small cobble 90 128 and cobble 90 128 180 very large cobble 180 226 180	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - tu 100% - 80% - 60% - 50% - 40% - 30% -	D95 150				boul I	der 4.5 4 3.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.25 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 128 - 180 very large cobble 128 - 180 very and boulder 256 - 362	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 100% - 1000	D95 150				B boul	der 4.5 4 3.5 3.5 2.5 1.5 1.5 1.5 1.5	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.052 - 0.125 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 62 - 32 very coarse gravel 32 - 45 very coarse gravel 64 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 126 - 256 small boulder 362 - 512	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150				boul I	der 4.5 4.5 3.5 2.5 2.5 1.5 1.5 1.5 0.5 0	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder - 362 - 362 small boulder - 512 - 1024	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150		10	cobble	boul I	der 4.5 4 3.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 64 - 80 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 128 - 180 very large cobble 256 - 362 small boulder 362 - 512	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150			cobble	boul I	der 4.5 4.5 3.5 2.5 2.5 1.5 1.5 1.5 0.5 0	number
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.052 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder - 362 - 362 small boulder - 512 - 1024	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150		10	cobble	boul I	der 4.5 4.5 3.5 2.5 2.5 1.5 1.5 1.5 0.5 0	number
Note: n Material Size Range (mm) silt/clay 0 0.062 very fine sand 0.062 0.125 fine sand 0.125 0.25 medium sand 0.25 1 very coarse sand 1 2 very fine gravel 2 4 fine gravel 4 6 fine gravel 4 6 medium gravel 11 16 coarse gravel 22 32 very coarse gravel 45 64 small cobble 64 90 medium cobble 180 -256 small boulder 226 322 very large cobble 180 256 small boulder 362 512 medium boulder 512 1024 arge cobble 1024 2048	Count 2 1 1 2 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150		10	cobble	boul I	der 4.5 4.5 3.5 2.5 2.5 1.5 1.5 1.5 0.5 0	number
Note: n Size Range (mm) silt/clay 0 0.062 very fine sand 0.062 0.125 fine sand 0.052 0.25 medium sand 0.25 0.5 coarse sand 0.5 1 very fine gravel 2 4 fine gravel 4 6 fine gravel 8 11 medium gravel 8 11 medium gravel 16 22 coarse gravel 22 32 very coarse gravel 22 32 very coarse gravel 45 64 small cobble 64 90 medium cobble 90 128 large cobble 180 256 small boulder 256 362 small boulder 256 362 small boulder 512 1024	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150		10 particle size (m	cobble		der 4.5 4.5 3.5 2.5 2.5 1.5 1.5 1.5 0.5 0	number
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.052 - 0.125 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 very coarse gravel 22 - 32 very coarse gravel 664 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 126 - 512 small boulder - 362 - 512 medium boulder - 122 - 2048 very large boulder - 256 - 362 small boulder - 2048 - 2048 very large boulder - 1024 - 2048 very large boulder - 2048 - 4096	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1 	10 particle size (m ze Distribution	cobble	bould	der 4.5 4 3.5 2.5 2 1.5 0 10000	number of particles
Note: n Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.125 - 0.25 very fine gravel 0 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 22 - 45 very coarse gravel 45 - 64 small cobble 64 -90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder - 512 - 1024 large boulder 2048 - 4096 very large boulder 204	Count 2 1 1 2 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1 <u>Siz</u>	10 particle size (m rean 4.0	cobble	a boul b boul	der 4.5 4 3.5 2.5 2.5 1.5 1.0 0.5 00000	number of particles
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.25 - 0.5 coarse sand 0.25 - 1 very coarse sand 0.25 - 1 very coarse sand 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 25 6 small cobble 64 -90 medium cobble 180 - 256 small boulder 128 - 1024 large cobble 180 - 256 small boulder 1024 - 2048 <	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1	10 particle size (m ze Distribution mean 4.0 rsion 12.0	cobble	a boul a boul a boul a boul a boul b boul	der 4.5 4 3.5 3 2.5 1.5 1.5 1.5 0 10000	number
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.25 - 0.125 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 2 4 fine gravel 6 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 64 - 8 medium gravel 64 - 90 medium cobble 90 - 128 large cobble 180 - 256 small boulder 362 - 512 medium boulder 256 - 362 small boulder 2024 - 2048 very large boulder 1024 - 2048 very large boulder 2024 - 2048 ver	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1	10 particle size (m rean 4.0	cobble	B boul	der 4.5 4 3.5 3.5 4 4.5 4 4.5 4 4.5 4 4.5 4 4 4 4 4 4 4	number of particles
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.25 - 0.5 coarse sand 0.25 - 1 very coarse sand 0.25 - 1 very coarse sand 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 25 6 small cobble 64 -90 medium cobble 180 - 256 small boulder 128 - 1024 large cobble 180 - 256 small boulder 1024 - 2048 <	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1	10 particle size (m ze Distribution mean 4.0 rsion 12.0	cobble	bould I <td>der 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5</td> <td>number of particles</td>	der 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	number of particles
Note: n Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 0.125 fine sand 0.25 - 0.5 coarse sand 0.25 - 1 very coarse sand 0.25 - 1 very coarse sand 1 - 2 very tine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 45 - 64 small cobble 64 -90 medium cobble 90 - 128 large cobble 180 - 256 small boulder 362 - 512 medium boulder 256 - 362 small boulder 1024 - 2048 very large boulder 2048 4096 to	Count 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	100% - 90% - 80% - 70% - 90% - 60% - 10% - 30% - 20% - 10% - 0% -	D95 150	1	10 particle size (m ze Distribution mean 4.0 rsion 12.0	cobble	B boul	der 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	number of particles

3) Bulk Sample Sieve Analysis

Two samples may be entered below. Select sample type for each.

Project:		Stream Restor	ration Site	-		
	Guilford Co.	, NC	-			
Project No:	1024-HLGR	-				
			NC Regi	onal Curves	(Rural Pie	dmont)
Location	Hec-Ras	D.A.	Area _{bkf}	Width _{bkf}	Depth _{bkf}	Q _{bkf}
	Station	(mi^2)	(ft^2)	(ft)	(ft)	(cfs)
Buckhorn Creek - Reach 1 (100+00 to 124+00)		2.78	42.95	18.46	2.08	185.91
Buckhorn Creek - Reach 2 (124+00 to 137+00)		3.04	45.64	19.18	2.14	198.27
Buckhorn Creek - Reach 3 (137+00 to 151+00)		3.24	47.66	19.71	2.19	207.58
Buckhorn Creek - Reach 4 (151+00 to 166+00)		3.51	50.33	20.40	2.24	219.89
Buckhorn Creek - Reach 5 (166+00 to 186+00)		3.76	52.74	21.01	2.29	231.06
Buckhorn Creek - Reach 6 (186+00 to 191+00)		4.02	55.19	21.63	2.34	242.45
West Branch - D/s End		0.20	7.17	5.95	0.90	27.95
Middle Branch - U/s End		0.09	4.17	4.22	0.69	15.73
Middle Branch - D/s End		0.20	7.17	5.95	0.90	27.95
East Branch - D/s End		0.20	7.17	5.95	0.90	27.95
Little Branch - D/s End		0.02	1.50	2.21	0.43	5.33
SW Creek - U/s End		0.09	4.17	4.22	0.69	15.73
SW Creek - D/s End		0.19	6.93	5.82	0.88	26.93
SE Creek - U/s End		0.14	5.63	5.11	0.80	21.62
SE Creek - D/s of UT		0.18	6.68	5.69	0.87	25.90
				Composite	Curves	
Location	Hec-Ras	D.A.	Area _{bkf}	Width _{bkf}	Depth _{bkf}	Q _{bkf}
	Station	(mi^2)	(ft^2)	(ft)	(ft)	(cfs)
Buckhorn Creek - Reach 1 (100+00 to 124+00)	0	2.78	41.88			178.52
Buckhorn Creek - Reach 2 (124+00 to 137+00)	0	3.04	44.50			190.80
Buckhorn Creek - Reach 3 (137+00 to 151+00)	0	3.24	46.47			200.06
Buckhorn Creek - Reach 4 (151+00 to 166+00)	0	3.51	49.07			212.34
Buckhorn Creek - Reach 5 (166+00 to 186+00)	0	3.76	51.41			223.49
Buckhorn Creek - Reach 6 (186+00 to 191+00)	0	4.02	53.80			234.88
West Branch - D/s End	0	0.2	7.01			25.20
Middle Branch - U/s End	0	0.09	4.08			13.91
Middle Branch - D/s End	0	0.2	7.01			25.20
East Branch - D/s End	0	0.2	7.01			25.20
Little Branch - D/s End	0	0.02	1.47			4.54
SW Creek - U/s End	0	0.09	4.08			13.91
SW Creek - D/s End	0	0.19	6.77			24.26
SE Creek - U/s End	0	0.14	5.50			19.33
SE Creek - D/s of UT	0	0.18	6.53			23.30
			USGS Re	gression Eq	uations (Pie	edmont)
Location	Hec-Ras	D.A.	Q ₅	Q ₁₀	Q ₅₀	Q ₁₀₀
		(mi^2)				
Buckhorn Creek - Reach 3 (137+00 to 151+00)	Station 0	(mi) 3.24	(cfs) 546.43	(cfs) 740.38	(cfs) 1302.94	(cfs) 1600.51
Buckhorn Creek - Reach 3 (157+00 to 151+00) Buckhorn Creek - Reach 4 (151+00 to 166+00)	0	3.24	576.63	740.38	1302.94	1600.51
Buckhorn Creek - Reach 5 (166+00 to 186+00) Buckhorn Creek - Reach 5 (166+00 to 186+00)	0	3.76	603.92	816.44	1370.21	1754.72
Buckhorn Creek - Reach 6 (186+00 to 191+00)	0	4.02	631.67	853.11	1430.82	1828.74
West Branch - D/s End	0	0.2	84.09	118.80	226.02	286.27
Middle Branch - U/s End	0	0.09	49.17	70.30	136.78	174.77
Middle Branch - D/s End	0	0.0	84.09	118.80	226.02	286.27
East Branch - D/s End	0	0.2	84.09	118.80	226.02	286.27
Little Branch - D/s End	0	0.02	17.90	26.17	53.11	68.99
SW Creek - U/s End	0	0.02	49.17	70.30	136.78	174.77
SW Creek - D/s End	0	0.19	81.24	114.86	218.84	277.34
			51.27	111.00		
SE Creek - U/s End	0	0.14	66.17	93.98	180.59	229.64

Holly Grove Stream Restoration Site Guilford Co., NC										
1024-HLGR										
Location	Top Width (ft)	Thalweg Width (ft)	Side Slope (X·1)	Max Depth (ft)	Depth at Toe (ft)	Bottom Width (ft)	Toe Slope (X:1)	XS _{Area} (ft ²)	D _{Mean} (ft)	W/D Ratio
Buckhorn Creek - Reach 1 (100+00 to 124+00)	22	3	2	2.3	1.7	15.2	10.2	37.1	1.69	13.1
Buckhorn Creek - Reach 2 (124+00 to 137+00)	23	3	2	2.4	1.8	15.8	10.7	40.6	1.76	13.0
Buckhorn Creek - Reach 3 (137+00 to 151+00)	23	4	2	2.4	1.8	15.8	9.8	40.9	1.78	12.9
Buckhorn Creek - Reach 4 (151+00 to 166+00)	24	4	2	2.5	1.8	16.8	9.1	44.0	1.83	13.1
Buckhorn Creek - Reach 5 (166+00 to 186+00)	24.5	4	2	2.6	1.9	16.9	9.2	46.6	1.90	12.9
Buckhorn Creek - Reach 6 (186+00 to 191+00)	25	4	2	2.6	1.9	17.4	9.6	47.8	1.91	13.1
West Branch - D/s End	9	1.5	2	0.95	0.7	6.2	9.4	6.3	0.70	12.9
Middle Branch - U/s End	7	1	2	0.7	0.55	4.8	12.7	3.7	0.53	13.3
Middle Branch - D/s End	9	1.5	2	0.9	0.65	6.4	9.8	6.0	0.67	13.5
East Branch - D/s End	9	1.5	2	0.9	0.65	6.4	9.8	6.0	0.67	13.5
Little Branch - D/s End	4	0.5	2	0.4	0.3	2.8	11.5	1.2	0.30	13.5
SW Creek - U/s End	7.5	1	2	0.75	0.6	5.1	13.7	4.2	0.57	13.3
SW Creek - D/s End	9	1.5	2	0.95	0.7	6.2	9.4	6.3	0.70	12.9
SE Creek - U/s End	8	1	2	0.85	0.6	5.6	9.2	4.9	0.61	13.0
SE Creek - D/s of UT	8.7	1.5	2	0.9	0.65	6.1	9.2	5.8	0.66	13.1

Holly Grove Stream Restoration Site Guilford Co., NC											
1024-HLGR											
Transition Reach Shear											
	Wetted	Hyd.	Channel	Shear				Shear			
Location	Perimeter	Radius	Slope	Stress	Particle	e Range		Stress	Sheilds	Rosgen	Average
Buckhorn Creek - Reach 1 (100+00 to 124+00)	23.6	1.57	0.005	0.49	22.55	83		0.98	45.50	256	151
Buckhorn Creek - Reach 2 (124+00 to 137+00)	24.7	1.64	0.004	0.41	18.81	89		0.82	38.01	200	119
Buckhorn Creek - Reach 3 (137+00 to 151+00)	24.8	1.65	0.004	0.41	18.90	89		0.82	38.19	201	120
Buckhorn Creek - Reach 4 (151+00 to 166+00)	25.8	1.71	0.005	0.53	24.56	98		1.06	49.53	287	168
Buckhorn Creek - Reach 5 (166+00 to 186+00)	26.4	1.77	0.006	0.66	30.62	144		1.32	61.64	378	220
Buckhorn Creek - Reach 6 (186+00 to 191+00)	26.9	1.78	0.004	0.44	20.41	97		0.89	41.22	224	133
West Branch - D/s End	9.7	0.65	0.013	0.53	24.24	96		1.05	48.88	282	165
Middle Branch - U/s End	7.5	0.49	0.019	0.58	26.85	115		1.16	54.10	321	188
Middle Branch - D/s End	9.6	0.62	0.013	0.50	23.28	88		1.01	46.96	267	157
East Branch - D/s End	9.6	0.62	0.014	0.54	25.10	102		1.09	50.61	295	173
Little Branch - D/s End	4.3	0.28	0.02	0.35	15.82	74		0.69	32.04	154	93
SW Creek - U/s End	8.0	0.53	0.016	0.53	24.25	96		1.05	48.90	282	165
SW Creek - D/s End	9.7	0.65	0.02	0.81	37.51	196		1.62	75.42	482	279
SE Creek - U/s End	8.6	0.57	0.007	0.25	11.30	50		0.50	23.00	86	55
SE Creek - D/s of UT	9.3	0.62	0.007	0.27	12.22	55		0.54	24.85	100	63

Holly Grove Stream Restoration Site Guilford Co., NC 1024-HLGR																	
	Top Width													Max Riffle	D_{Pool}/D_{Riff}	Max Pool	
Location	(ft)	P-P	ratio	Rc I	Ratio	P-P	ratio	Rc I	Ratio	Tangen	t Length	Chord	Length	Depth	Ratio	Depth	Difference
Buckhorn Creek - Reach 1 (100+00 to 124+00)	22	4	6	2	3	88	132	44	66	44	66	42	63	2.3	1.5	3.5	1.15
Buckhorn Creek - Reach 2 (124+00 to 137+00)	23	4	6	2	3	92	138	46	69	46	69	44	66	2.4	1.5	3.6	1.20
Buckhorn Creek - Reach 3 (137+00 to 151+00)	23	4	6	2	3	92	138	46	69	46	69	44	66	2.4	1.5	3.6	1.20
Buckhorn Creek - Reach 4 (151+00 to 166+00)	24	4	6	2	3	96	144	48	72	48	72	46	69	2.5	1.5	3.8	1.25
Buckhorn Creek - Reach 5 (166+00 to 186+00)	24.5	4	6	2	3	98	147	49	73.5	49	74	47	70	2.6	1.5	3.9	1.30
Buckhorn Creek - Reach 6 (186+00 to 191+00)	25	4	6	2	3	100	150	50	75	50	75	48	72	2.6	1.5	3.9	1.30
West Branch - D/s End	9	4	6	2	3	36	54	18	27	18	27	17	26	0.95	1.5	1.4	0.48
Middle Branch - U/s End	7	4	6	2	3	28	42	14	21	14	21	13	20	0.7	1.5	1.1	0.35
Middle Branch - D/s End	9	4	6	2	3	36	54	18	27	18	27	17	26	0.9	1.5	1.4	0.45
East Branch - D/s End	9	4	6	2	3	36	54	18	27	18	27	17	26	0.9	1.5	1.4	0.45
Little Branch - D/s End	4	4	6	2	3	16	24	8	12	8	12	8	12	0.4	1.5	0.6	0.20
SW Creek - U/s End	7.5	4	6	2	3	30	45	15	22.5	15	23	14	22	0.75	1.5	1.1	0.38
SW Creek - D/s End	9	4	6	2	3	36	54	18	27	18	27	17	26	0.95	1.5	1.4	0.48
SE Creek - U/s End	8	4	6	2	3	32	48	16	24	16	24	15	23	0.85	1.5	1.3	0.43
SE Creek - D/s of UT	8.7	4	6	2	3	34.8	52.2	17.4	26.1	17	26	17	25	0.9	1.5	1.4	0.45

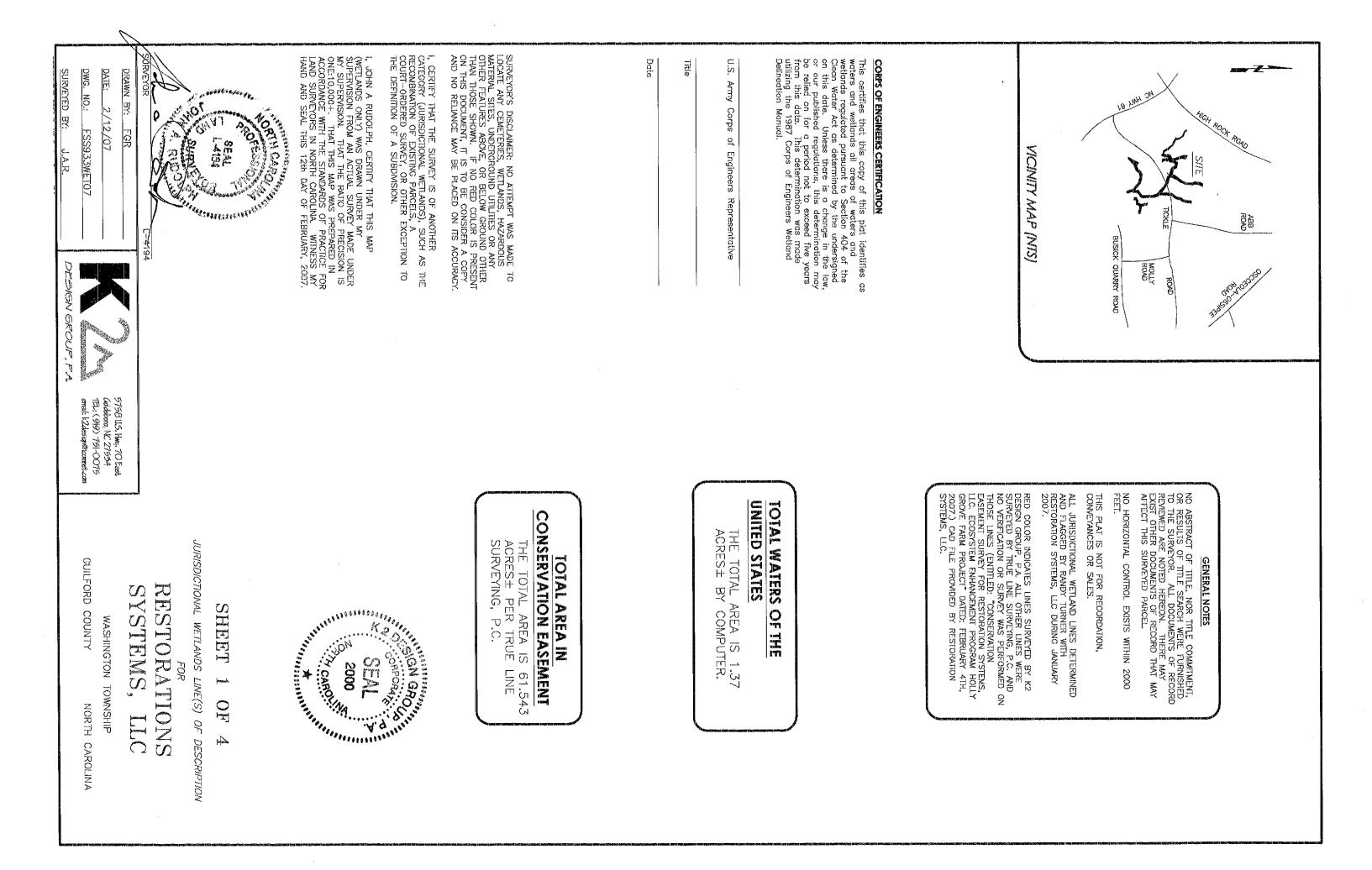
Appendix G. Categorical Exclusion Form

Appendix A

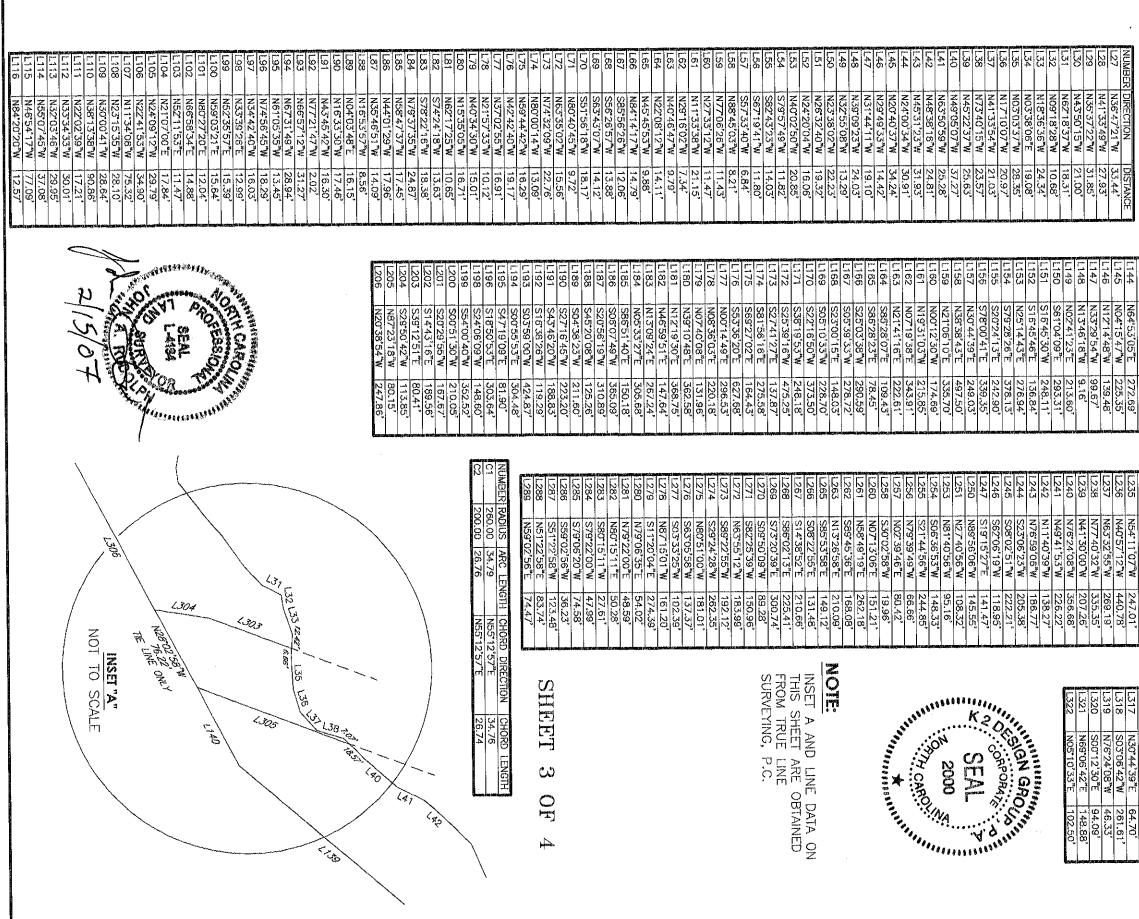
Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Part 1	: General Project Information							
Project Name:	Holly Grove Stream Restoration Site							
County Name:	Guilford							
EEP Number:	Contract # D06028-B							
Project Sponsor:	Restoration Systems, LLC							
Project Contact Name:	Tara Alden							
Project Contact Address:	1101 Haynes Street, Suite 107, Raleigh, NC 27607							
Project Contact E-mail:	tara@restorationsystems.com							
EEP Project Manager:	Guy Pearce							
	Project Description							
The Site is located in northeastern Guilford County within 14-digit hydrological unit 03030002020070, approximately 20 miles northeast of the City of Greensboro. The Site encompasses approximately 80 acres, consisting of 19,235 linear feet of existing stream and riparian buffer along unnamed tributaries to Reedy Fork. The Site is located approximately 5 miles upstream of the Haw River. Approximately 13,350 linear feet of stream restoration and 5,940 feet of stream enhancement (Level II) will be implemented for a total of 15,726 Stream Mitigation Units.								
	For Official Use Only							
Reviewed By: Date	EEP Project Manager							
Conditional Approved By:								
Date	For Division Administrator FHWA							
Check this box if there are o	utstanding issues							
Final Approval By:								
/-9-07 Date	Dardd u R For Division Administrator							
	FHWA							

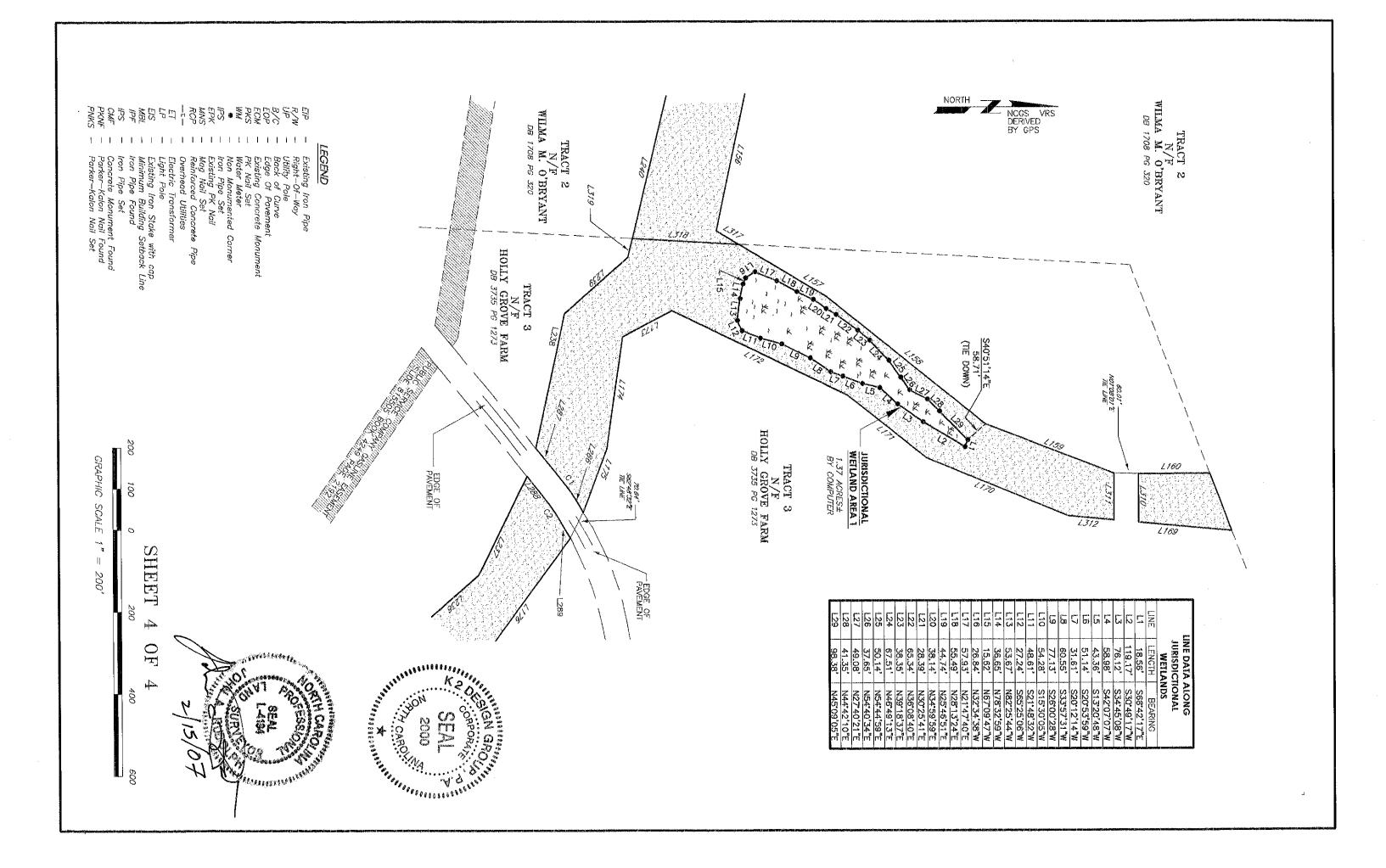

Version 1.4, 8/18/05


Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
1. Is the project located in a CAMA county?	I Yes I I No
2. Does the project involve ground-disturbing activities within a CAMA Area of Environmental Concern (AEC)?	☐ Yes ☐ No
3. Has a CAMA permit been secured?	V/A Yes
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management	□ No ☑ N/A □ Yes
Program?	□ No ☑ N/A
Comprehensive Environmental Response, Compensation and Liability Act (C	CERCLA)
1. Is this a "full-delivery" project?	I ✓ Yes
2. Has the zoning/land use of the subject property and adjacent properties ever been designated as commercial or industrial?	☐ Yes ☑ No ☐ N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential hazardous waste sites within or adjacent to the project area?	☐ Yes ☑ No ☐ N/A
4. As a result of a Phase I Site Assessment, are there known or potential hazardous waste sites within or adjacent to the project area?	☐ Yes ☐ No ☑ N/A
5. As a result of a Phase II Site Assessment, are there known or potential hazardous waste sites within the project area?	☐ Yes ☐ No ☑ N/A
6. Is there an approved hazardous mitigation plan?	☐ Yes ☐ No ☑ N/A
National Historic Preservation Act (Section 106)	
1. Are there properties listed on, or eligible for listing on, the National Register of Historic Places in the project area?	☐ Yes ☑ No
2. Does the project affect such properties and does the SHPO/THPO concur?	☐ Yes ☐ No ☑ N/A
3. If the effects are adverse, have they been resolved?	☐ Yes ☐ No ☑ N/A
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	
1. Is this a "full-delivery" project?	Ves
2. Does the project require the acquisition of real estate?	I Yes I No I NA
3. Was the property acquisition completed prior to the intent to use federal funds?	☐ Yes ☑ No ☐ N/A
 4. Has the owner of the property been informed: * prior to making an offer that the agency does not have condemnation authority; and * what the fair market value is believed to be? 	I Yes □ No □ N/A


Part 3: Ground-Disturbing Activities	
Regulation/Question	Response
American Indian Religious Freedom Act (AIRFA)	
 Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians? 	I Yes I No
2. Is the site of religious importance to American Indians?	Yes
	No No
	I N/A
3. Is the project listed on, or eligible for listing on, the National Register of Historic	Yes
Places?	□ No
	☑ N/A
4. Have the effects of the project on this site been considered?	Ves
	□ No
	I N/A
Antiquities Act (AA)	
1. Is the project located on Federal lands?	Yes
	✓ No
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects	Yes
of antiquity?	No No
	I I N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes
	I No
	☑ N/A
4. Has a permit been obtained?	☐ Yes
	✓ N/A
Archaeological Resources Protection Act (ARPA)	
1. Is the project located on federal or Indian lands (reservation)?	Yes
	✓ No
2. Will there be a loss or destruction of archaeological resources?	Yes
	🗌 No
	☑ N/A
3. Will a permit from the appropriate Federal agency be required?	Yes
	□ No
	☑ N/A
4. Has a permit been obtained?	☐ Yes
	☑ N/A
Endangered Species Act (ESA)	
Endangered Species Act (ESA)	
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat	Ves
listed for the county?	□ No
2. Is Designated Critical Habitat or suitable habitat present for listed species?	Yes
	🗹 No
	□ N/A
3. Are T&E species present or is the project being conducted in Designated Critical	Yes
Habitat?	□ No
	☑ N/A
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify"	☐ Yes
Designated Critical Habitat?	
	⊠ N/A
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	☐ Yes
	☑ N/A
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	☐ Yes
	D No
	I∕I N/A

Executive Order 13007 (Indian Sacred Sites)	
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	I Yes I INO
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	Yes No
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	 ✓ N/A Yes No ✓ N/A
Farmland Protection Policy Act (FPPA)	I ₪ N/A
1. Will real estate be acquired?	I ✓ Yes
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	
3. Has the completed Form AD-1006 been submitted to NRCS?	I Yes I No I N/A
Fish and Wildlife Coordination Act (FWCA)	
1. Will the project impound, divert, channel deepen, or otherwise control/modify any water body?	I ✓ Yes
2. Have the USFWS and the NCWRC been consulted?	Yes No N/A
Land and Water Conservation Fund Act (Section 6(f))	
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes ☑ No
2. Has the NPS approved of the conversion?	☐ Yes ☐ No ☑ N/A
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fish	
1. Is the project located in an estuarine system?	☐ Yes ☑ No
2. Is suitable habitat present for EFH-protected species?	☐ Yes ☐ No ☑ N/A
3. Is sufficient design information available to make a determination of the effect of the project on EFH?	☐ Yes ☐ No ☑ N/A
4. Will the project adversely affect EFH?	☐ Yes ☐ No ☑ N/A
5. Has consultation with NOAA-Fisheries occurred?	☐ Yes ☐ No ☑ N/A
Migratory Bird Treaty Act (MBTA)	
1. Does the USFWS have any recommendations with the project relative to the MBTA?	I Yes I No
2. Have the USFWS recommendations been incorporated?	☐ Yes ☐ No ☑ N/A
Wilderness Act	
1. Is the project in a Wilderness area?	☐ Yes ✔ No
2. Has a special use permit and/or easement been obtained from the maintaining federal agency?	☐ Yes ☐ No ☑ N/A

Appendix H. Wetland Plat and Data Sheets



126	52	L24	52	122	121	120	617	L18	117	L16	L15	L14	L13	112	11	01	ទា	18	7	Б	ច	4	ភ	12	L1	NUMBER
N09-24-48 W	N11"21"38"E	N1657'49 W	N25 35'03 W	N42'47'14"W	N48°07°04"W	N64 13 57 W	S87-33'17"W	S87"26'18"W	W 02, 11, 08N	N75'56'25 W	N53"04'58"W	N6749'25"W	N87"30'29"W	S65'50'58"W	N43 19°27"W	N4706'43"W	N42"37"55"W	3, 25, 80, 92N	N26"52'40"E	"H24"46"52"E	N15'23'34"E	N15'23'49"E	N15-29'40"E	S86"51'40"E	S04"14'42"W	DIRECTION
12.87	24.92	28.43	19.42	28.65	28.54	13.85	31.13	46.55	27.75	22.38'	37.33'	28.57	20.76	27.92	30.02'	31.16'	357.37	64.68	115.25'	86.73	1.5	50.04'	100.30	283.67	148.39	DISTANCE

218.88	÷	L143
143.66	N16"25"43"E	L142
163.27	S82"02"24"E	L141
336.17	S28"02"58"E	L140
185.24	S49'48'01"E	L1 <u>3</u> 9
228.15	S31"34"11"E	L138
414.34	S63 53 15"E	L137
266.76	S14"35"05"E	L136
296.49	S35"08'14"E	5517
294.67"	S64"29"10"E	L134
178.59	S44"26"38"E	L133
65.00'	N30°02°58"E	L132
184.49	S5714'29"E	L131
14.12	N14"54'48"W	L130
28.93	N34"54"21"W	L129
37.41'	N31"33'47"W	L128
21.47	N54"21"39"W	L127
38.71'	N40°03'25*W	L126
25.30	N70"20'28"W	L125
38,45'	N50-2718 W	L124
22.55	N48"38'25"W	L123
31.06'	N7746'02"W	1122
34.24	N47"51"48"W	L121
26.44'	N73°52'07"₩	1120
32.71	N71°46'51"W	6117
31.36	W79-11'33"W	118
27.33'	NS7"41"10"W	L117
DISTANCE	DIRECTION	NUMBER

011017	1.	
222 227	12,40	1220
270.98'	N57"04"02"E	232
144.88	N43"45"26"E	1231
202.18'	N01"26'50"E	1230
154.17	S68"41"58"E	229
134.81'	S38'11'12"E	1228
319.75	S54"42'27"E	1227
353.27'	S74"15"39"E	1226
293.02'	S85*30*36*E	1225
181.28'	N58-49'20"E	1224
114.83	N15"18'57"E	1223
333.92'	N69"32"04"E	1222
254.69"	S61°22'03"E	1221
503.03	N26"08"36"E	1220
64.88"	N26"08"53"E	11219
115.25	N26"52'40"E	1218
86.73'	N24 46 52 E	1217
79.58'	N87°23'18"W	1216
581.06'	S47"07"46"W	1215
449.55"	S68"23"24"W	1214
53.50'	S41"12'33"W	1213
256.17'	S86"19'11"W	1212
219.66	N62'54'33"W	1211
133.38"	S86"27"33"W	0121
407.26*	N49"08'21"W	1209
174.67'	M.02.12.29N	1208
221.40'	N09"12"49"W	L207
DISTANCE	DIRECTION	NUMBER

7 NIZOPAA	316 S16 45 46 E		314 S731414"W	313 N13 46,18"W	312 S05 10'33 W	311 N90'00'00"E	310 N90"00"E	309 S41.15,33 W	L308 S48 47 27"E	_307 S48*47*27"E	306 S28 02'58"E	.305 S69"30"32"E	.304 SB0 53'47"E	_303 S69"30"32"E	.302 S80°53'47"E	301 S06'36'53'W	082	299 S80°53°47"E	298 S02"00'48"E	297 S80'53'47"E	S22,50,255	295 S00°23'19"E	294 S01*39*07*E	293 S55'05'52"E	292 S68'11'47"E		
A 70'	351.88	160.53	157.39'	352.65	112.49	113.58'	117.83	168,43"	171.28'	160.03	182.86'	139.82"	48.31'	74.99'	155.11	56.00'	150.94'	148.46'	152.36	128.34	186.02'	73.20'	446.01	188.03'	161.82'	82.54	

WETLAND

Project / Site: Holly Grove Applicant / Owner: Restoration Systems, LLC Investigator: M. Randall Turner	Date: <u>09/27/2006</u> County: <u>Guilford</u> State: <u>NC</u>
Do normal circumstances exist on the site?Yes_XNoIs the site significantly disturbed (Atypical situation)?YesNoXIs the area a potential problem area?YesNoX(explain on reverse if needed)YesNoX	CommunityID: <u>PEM01</u> Transect ID: <u>Flag 02</u> Plot ID:

VEGETATION

Dominant Plant Specles	<u>Stratum</u>	Indicator	Dominant Plant Species	<u>Stratum</u>	Indicator
1. Ulmus americana 2. Salix nigra 3. Scirpus sp. 4. Juncus effusus 5. 6. 7. 8.	T,S.Sh T,S S,Sh H	OBL OBL FACW+	9. 10. 11. 12. 13. 14. 15. 16.		
	41 4			0.7	

Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 100%

Remarks: Community PSSO1C could also be classified as PFO1C strictly based on canopy size (see Cowardin); subsets of community are PEM1E, but both communities are intimately mixed

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge	Wetland Hydrology Indicators
Aerial Photographs Other	Primary Indicators: Inundated
	X Saturated in Upper 12"
X No Recorded Data Available	X Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
	X_ Drainage Patterns in Wetlands
Depth of Surface Water:0-3(in.)	Cocondary Indicatory
	Secondary Indicators:
Depth to Free Water in Pit: <u>0-6</u>	X Oxidized Roots Channels in Upper 12"
<u>(i</u> n.)	X Water-Stained Leaves
	Local Soil Survey Data
Depth to Saturated Soil:0_(in.)	FAC-Neutral Test Other (Explain in Remarks)
Remarks:	

UPLAND

Project / Site: Holly Grove Applicant / Owner: Restoration Systems, LLC Investigator: M. Randall Turner	Date: <u>09/27/2006</u> County: <u>Guilford</u> State: <u>NC</u>
Do normal circumstances exist on the site? Yes_X NoIs the site significantly disturbed (Atypical situation)? Yes_No_X Is the area a potential problem area? Yes_No_X (explain on reverse if needed) Yes_No_X	CommunityID: <u>Mixed</u> Transect ID: <u>Flag 02</u> Plot ID:

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	<u>Stratum</u>	Indicator				
1. Liquidambar styraciflua 2. Juniperus virginiana 3. Solidago sp. 4. Rubus sp. 5. Lonicera japonica 6. 7. 8.	<u>Sh</u> Sh , H	FAC+ FACU- - FAC-	9. 10. 11. 12. 13. 14. 15. 16.	· · · · · · · · · · · · · · · · · · ·					
Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 20%									

Remarks:

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge	Wetland Hydrology Indicators
Aerial Photographs	Primary Indicators:
Other	Inundated
	Saturated in Upper 12"
X No Recorded Data Available	Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
Field Observations.	Drainage Patterns in Wetlands
Depth of Surface Water:(in.)	Secondary Indicators:
Depth to Free Water in Pit: >15 (in.)	Oxidized Roots Channels in Upper 12" Water-Stained Leaves
	Local Soil Survey Data
Double to Conjugate of Colly 15 (2-)	FAC-Neutral Test
Depth to Saturated Soil: ≥ 15 (in.)	Other (Explain in Remarks)
Remarks:	

WETLAND

Project / Site: Holly Grove Applicant / Owner: Restoration Systems, LLC Investigator: M. Randall Turner	Date: <u>09/27/2006</u> County: <u>Guilford</u> State: <u>NC</u>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CommunityID: <u>PSS01</u> Transect ID: <u>Flag 03</u> Plot ID:

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	<u>Stratum</u>	Indicator
1. Ulmus americana 2. Salix nigra 3. Scirpus sp. 4. Juncus effusus 5. Lonicera japonica 6.	<u>T,S,Sh</u> <u>T,S</u> <u>S,Sh</u> <u>H</u> V	FACW OBL OBL FACW+ FAC-	9 10 11 12 13 13 14 15 16		
Percent of Dominant Species	that are	OBL, FACW	, or FAC excluding FAC-). <u>809</u>	%	
			sified as PFO1C strictly based , but both communities are int	-	-

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge Aerial Photographs Other X. No Recorded Data Available Field Observations:	Wetland Hydrology Indicators Primary Indicators: Inundated _X Saturated in Upper 12"X Water Marks Drift Lines Sediment Deposits
Depth of Surface Water: (in.) Depth to Free Water in Pit: 9 (in.) Depth to Saturated Soil: 0 (in.)	X Drainage Patterns in Wetlands Secondary Indicators: Oxidized Roots Channels in Upper 12" X Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test X Other (Explain in Remarks)
Remarks: Prominent H2S smell in some holes	

UPLAND

Project / Site: Holly Grove Applicant / Owner: Restoration Systems, LLC Investigator: M. Randall Turner	Date: <u>09/27/2006</u> County: <u>Guilford</u> State: <u>NC</u>
Do normal circumstances exist on the site?Yes_XNoIs the site significantly disturbed (Atypical situation)?YesNoXIs the area a potential problem area?YesNoX(explain on reverse if needed)YesYes	CommunityID: <u>Mixed</u> Transect ID: <u>Flag 03</u> Plot ID:

VEGETATION

Dominant Plant Species	<u>Stratum</u>	Indicator	Dominant Plant Species	<u>Stratum</u>	Indicator
 Liquidambar styraciflua Juniperus virginiana Solidago sp. Rubus sp. Lonicera japonica 	<u>S,Sh</u> <u>Sh</u> <u>Sh , H</u> <u>Sh , H</u> <u>V , H</u>	FAC+ FACU- - FAC-	9 10 11 12 13 14 15		
78 Percent of Dominant Species	that are	OBL, FACW	16 , or FAC excluding FAC-). <u>209</u>	<u></u>	

Remarks:

Recorded Data (Describe In Remarks): Stream, Lake, or Tide Gauge	Wetland Hydrology Indicators
Aerial Photographs	Primary Indicators:
Other	Inundated
	Saturated in Upper 12"
X No Recorded Data Available	_ Water Marks
	Drift Lines
Field Observations:	Sediment Deposits
Field Observations.	Drainage Patterns in Wetlands
Depth of Surface Water:(in.)	Secondary Indicators:
	Oxidized Roots Channels in Upper 12"
Depth to Free Water in Pit: ≥ 15 (in.)	Water-Stained Leaves
	Local Soil Survey Data
Depth to Saturated Soil:	FAC-Neutral Test
	Other (Explain in Remarks)
Remarks:	

Map Unit Name (Series and Phase): <u>Not Mapped due to Impounding</u> Drainage Class:						
Taxonomy (Subgroup):	Confirm Mappe	d Type? Yes No				
Profile Description: Depth Matrix Colors Mottle Colors (inches) Horizon (Munsell Molst) (Munsell Moist)	Mottle <u>Abundance</u> /Contrast	Texture, Concretions, Structure, etc.				
<u>0-9 A 7.5YR4/6 10YR5/8</u>	10 %	Sandy-Loam				
<u>9-15 B 2.5Y6/3 10YR5/8</u>	<10%	Sandy-Clay-Loam				
Hydric Soil Indicators:						

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes No _X Yes No _X Yes No _X	Is the Sampling Point Within a Wetland? Yes No <u>X</u>
Remarks:		

Map Unit Name (Series and Phase): Not Mapped due to Impounding Drainage Class:						
Taxonom	ıy (Subgro	up):		Confirm Mappe	d Type? Yes No	
Profile Des Depth (Inches)		Matrix Colors (Munsell Moist)	Mottle Colors (<u>Munsell Molst)</u>	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc.	
0-7	A	10YR4/2	10YR5/8	20+ %	Sandy-Loam	
<u>7-15</u>		<u>10YR5/2, 5/4</u>	<u>10YR5/8</u>		Clay-Loam to Clay	
Hydric Soil Indicators:						
Remarks	:				•	

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes <u>X</u> No Yes <u>X</u> No Yes <u>X</u> No	Is the Sampling Point Within a Wetland? Yes \underline{X} No
Remarks:	All Revent philosophic and a set of the	kan ana ang mang mang mang mang mang mang

Map Uni (Series a			due to Impounding s:	<u>.</u>		
Taxonor	Taxonomy (Subgroup): Confirm Mapped Type? Yes No					
<u>Profile Des</u> Depth <u>(inches)</u>	<u>scription:</u> <u>Horizon</u>	Matrix Colors (Munsell Moist)	Mottle Colors (Munsell Moist)	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc.	
0-9	A	7.5YR4/6	10YR5/8	10 %	Sandy-Loam	
9-15			<u>10YR5/8</u>	<10%	<u>Sandy-Clay-Loam</u>	
Hydric Soil Indicators: Concretions Histosol Concretions Histic Epipedon High Organic Content in Surface Layer in Sandy Soils Sulfidic Odor Organic Streaking in Sandy Soils Aquic Moisture Regime Listed On Local Hydric Soils List Reducing Conditions Listed on National Hydric Soils List Gleyed or Low-Chroma Colors Other (Explain in Remarks)						

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes Yes Yes	No X No X No X	Is the Sampling Point Within a Wetland? Yes No_		No <u>X</u>
Remarks:					

SO	IL	S
----	----	---

Map Unit Name (Series and Phase): Not Mapped due to Impounding Drainage Class:							
Taxonomy (Subgroup):				Confirm Mapped Type? Yes No			
Profile Desc Depth (inches)	<u>ription:</u> <u>Horizon</u>	Matrix Colors (Munsell Moist)	Mottle Colors (<u>Munsell Moist)</u>	Mottle <u>Abundance/Contrast</u>	Texture, Concretions, Structure, etc.		
0-6	A	10YR5/2	10YR5/6	20+ %	Sandy-Loam-Clay		
6-15+	<u> </u>	Gley 2 5/5BG	10YR6/8	<20%	Clay		
	·		<u></u>				
P		<u> </u>	·				
	·						
			<u> </u>				
			<u> </u>				
Hydric Soil Indicators:							
Histosol Histic Epipedon X Sulfidic Odor Aquic Moisture Regime X Reducing Conditions X Gleyed or Low-Chroma Colors			High Orga Liste	Concretions High Organic Content in Surface Layer in Sandy Soils Organic Streaking in Sandy Soils Listed On Local Hydric Soils List Listed on National Hydric Soils List Other (Explain in Remarks)			
Remarks:							

.

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes X No Yes X No Yes X No	Is the Sampling Point Within a Wetland? Yes <u>X</u> No
Remarks:		

Appendix I. EEP Project Approval Letter

June 8, 2007

Restoration Systems, LLC Attn: Tara Disy Allden 1101 Haynes Street, Suite 107 Raleigh, North Carolina 27604

Subject: Holly Grove Stream and Wetland Restoration Site Cape Fear River Basin - Cataloging Unit 03030002 Guilford County Contract # D06028-B

Dear Ms. Allden:

On June 6, 2007 Restoration Systems, LLC submitted the subject Restoration Plan for the Holly Grove Stream and Wetland Restoration Full Delivery Project. The plan proposes to restore, enhance and preserve approximately 21,000 feet of stream, 1.11 acres of riparian wetland and 42 acres of riparian buffer.

The Ecosystem Enhancement Program (EEP) has completed its review of the restoration plan and has no additional comments at this time. Please proceed with acquiring all necessary permits and/or certifications and complete the implementation of the earthwork portion of the mitigation project (Task 4). A copy of this letter should be included with your 401/404 permit applications.

For the purpose of obtaining approval of the erosion and sedimentation control plan for this project, I have also attached a memorandum confirming that Restoration Systems, LLC is the Owner and Financially Responsible Party, and has full operational control for all matters pertaining to construction of this project. Please sign and attach this memorandum to the Financial Responsibility/Ownership form of the erosion and sedimentation control plan application. Failure to do so may delay approval of the plan.

If you have any questions, or wish to discuss this matter further, please contact me at (919) 715-1656 or email at <u>guy.pearce@ncmail.net</u>.

Sincerely,

Guy C. Pearce EEP Full Delivery Program Supervisor

Restoring... Enhancing... Protecting Our State

North Carolina Ecosystem Enhancement Program, 1652 Mail Service Center, Raleigh, NC 27699-1652 / 919-715-0476 / www.nceep.net

Appendix J. Land Quality Letter

Restoration Systems, LLC Attn:Tara Disy Allden 1101 Haynes Street, Suite 107 Raleigh, North Carolina 27604

Re: Responsibility for Erosion and Sedimentation Control Holly Grove Creek Stream and Wetland Restoration Project - Full Delivery Project Guilford County – Cape fear River Basin – CU#03030002 Contract No. – D06028-B

This memorandum confirms the responsibility for compliance with the Sedimentation Pollution Control Act of 1973 and North Carolina Administrative Code Title 15A, Chapter 4 on the project that is the subject of the above-referenced contract between the Ecosystem Enhancement Program (EEP) and Restoration Systems, LLC.

Pursuant to the contract, the above-referenced project is a full delivery project. This means that Restoration Systems, LLC has full operational control over the project. As the "developer or other person who has or holds himself out as having ... operational control over the land-disturbing activity" Restoration Systems, LLC will be responsible for compliance with or any violation of the Sedimentation Pollution Control Act of 1973 or North Carolina Administrative Code Title 15A, Chapter 4. See 15A NCAC 04A .0105(8) and (9). Accordingly, any plan, revised plan, compliance request, notice of violation, fine, penalty or other enforcement action associated with this project remains the responsibility of Restoration Systems, LLC to resolve with regulatory or permitting agencies.

Please sign below and attach this memorandum to the Financial Responsibility/ Ownership form of the erosion and sedimentation control plan application in order to obtain plan approval and responsibility for erosion and sedimentation control solely in your name.

Respectively,

Huge Pears for

Jeff Jurek Project Control and Research Director

To DENR Land Quality Section

Restoration Systems, LLC hereby certifies that it has full operation control of this project for all matters pertaining to the construction of this project and that it constitutes the "Person Who Violates" and the "Person Conducting Land Disturbing Activity" as defined in 15A NCAC 4A.0105(8) and (9). Restoration Systems, LLC also understands that it is responsible for implementing any actions or measures necessary to comply with the Sedimentation Pollution Control Act.

Signed, Restoration Systems, LLC

[Person with Authority to Bind Contract Signature, Printed Name and Title]

